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PREFACE TO THE FIRST EDITION

A substantial portion of epidemiologic studies, particularly in community medicine,
veterinary herd health, field trials, and repeated measures from clinical investigations, produce data
that are clustered and quite heterogeneous. Such clustering will inevitably produce highly correlated
observations; thus, standard statistical techniques in non-specialized biostatistics textbooks are no
longer appropriate in the analysis of such data. For this reason it was our mandate to introduce to our
audience the recent advances in statistical modeling of clustered or correlated data that exhibit extra
variation or heterogeneity.

This book reflects our teaching experiences of a biostatistics course in the University of
Guelph’s Department of Population Medicine. The course is attended predominantly by
epidemiology graduate students; to a lesser degree we have students from Animal Science and
researchers from disciplines which involve the collection of clustered and over-time data. The
material in this text assumes that the reader is familiar with basic applied statistics, principles of
linear regression and experimental design, but stops short of requiring a cognizance of the details
of the likelihood theory and asymptotic inference. We emphasize the “how to” rather than the
theoretical aspect; however, on several occasions the theory behind certain topics could not be
omitted, but is presented in a simplified form.

The book is structured as follows:  Chapter 1 serves as an introduction in which the reader
is familiarized with the effect of violating the assumptions of homogeneity and independence on the
ANOVA problem. Chapter 2 discusses the problem of assessing measurement reliability. The
computation of the intraclass correlation as a measure of reliability allowed us to introduce this
measure as an index of clustering in subsequent chapters. The analysis of binary data summarized
in 2x2 tables is taken up in Chapter 3. This chapter deals with several topics including, for instance,
measures of association between binary variables, measures of agreement and statistical analysis of
medical screening test.  Methods of cluster adjustment proposed by Donald and Donner (1987), Rao
and Scott (1992) are explained. Chapter 4 concerns the use of logistic regression models in studying
the effects of covariates on the risk of disease. In addition to the methods of Donald and Donner, and
Rao and Scott to adjust for clustering, we explain the Generalized Estimating Equations, (GEE)
approach proposed by Liang and Zeger (1986). A general background on time series models is
introduced in Chapter 5. Finally, in Chapter 6 we show how repeated measures data are analyzed
under the linear additive model for continuously distributed data and also for other types of data
using the GEE.

We wish to thank Dr. A. Meek, the Dean of the Ontario Veterinary College, for his
encouragement in writing this book; Dr. S.W. Martin, Chair of the Department of Population
Medicine, for facilitating the use of the departmental resources; the graduate students who took the



course “Statistics for the Health Sciences”; special thanks to Dr. J. Sargeant for being so generous
with her data and to Mr. P. Page for his invaluable computing expertise. Finally, we would like to
thank J. Tremblay for her patience and enthusiasm in the production of this manuscript.

M. M. Shoukri
V. L. Edge
Guelph, Ontario

July 1995



                                             PREFACE TO THE SECOND EDITION

The main structure of the book has been kept similar to the first edition. To keep pace with
the recent advances in the science of statistics, more topics have been covered. In Chapter 2 we
introduced the coefficient of variation as a measure of reproducibility, and comparing  two dependent
reliability coefficients. Testing for trend using Cochran-Armitage chi-square, under cluster
randomization has been introduced in Chapter 4. In this chapter we discussed the application of the
PROC GENMOD in SAS, which implements the GEE approach, and “Multi-level analysis” of
clustered binary data under the “Generalized Linear Mixed Effect Models,” using Schall’s algorithm,
and GLIMMIX SAS macro. In Chapter 5 we added two new sections on modeling seasonal time
series; one uses combination of polynomials to describe the trend component and trigonometric
functions to describe seasonality, while the other is devoted to modeling seasonality using the more
sophisticated ARIMA models. Chapter 6 has been expanded to include analysis of repeated measures
experiment under the “Linear Mixed Effects Models,” using PROC MIXED in SAS. We added
Chapter 7 to cover the topic of survival analysis. We included a brief discussion on the analysis of
correlated survival data in this chapter.

An important feature of the second edition is that all the examples are solved using the SAS
package. We also provided all the SAS programs that are needed to understand the material in each
chapter.

        

M.M. Shoukri, Guelph, Ontario
C.A. Pause, London, Ontario
July 1998 
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Chapter 1

COMPARING GROUP MEANS WHEN THE STANDARD 
ASSUMPTIONS ARE VIOLATED

I. INTRODUCTION

A great deal of statistical experiments are conducted so as to compare two or more groups.
It is understood that the word 'group' is a generic term used by statisticians to label and distinguish
the individuals who share a set of experimental conditions.   For example, diets, breeds, age intervals,
methods of evaluations etc. are groups.  In this chapter we will be concerned with comparing group
means.  When we have two groups, that is when we are concerned with comparing two means µ1,
and µ2, the familiar Student t-statistic is the tool that is commonly used by most data analysts.  If we
are interested in comparing several group means; that is if the null hypothesis is H0:µ1=µ2=...=µk, a
problem known as the "Analysis of Variance", we use the F-ratio to seek the evidence in the data and
see whether it is sufficient to justify the above hypothesis.

In performing an "Analysis of Variance" (ANOVA) experiment, we are always reminded of
three basic assumptions:

Assumption (1): That the observations in each group are a random sample from a normally
distributed population with mean µi and variance σi

2 (i=1,2,...k).

Assumption (2): The variances σ1
2,...σk

2 are all equal.  This is known as the variance
homogeneity assumption.

Assumption (3): The observations within each group should be independent.

The following sections will address the effect of the violation of each of these three assumptions on
the ANOVA procedure, how it manifests itself, and possible corrective steps which can be taken.

A. NON-NORMALITY

It has been reported (Miller, 1986, p.80) that lack of normality has very little effect on the
significance level of the F-test.  The robustness of the F-test improves with increasing the number of
groups being compared, together with an increase in the group size ni.  The reason for this is a rather
technical issue and will not be discussed here.  However, the investigators should remain aware that
although the significance level may be valid, the F-test may not be appreciably powerful.
Transformations such as the square root, or the logarithm to improve normality can improve the
power of the F-test when applied to non-normal samples.  To provide the reader with the proper tool
to detect the non-normality of the data, either before or after performing the proper transformation
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we need some notation to facilitate the presentation.  Let yij denote the jth observation in the ith
group, where j=1,2,...ni and i=1,2,...k.  Moreover suppose that yij = µi+eij, where it is assumed that
eij are identically, independently and normally distributed random variables with E(eij)=0 and variance
(eij)=σ2 (or eij ! iid N(0,σ2)).  Hence, yij ! iid N (µi,σ2), and the assumption of normality of the data
yij needs to be verified before using the ANOVA F-statistic.

Miller (1986, p.82) recommended that a test of normality should be performed for each group.
One should avoid omnibus tests that utilize the combined groups such as a combined goodness-of-fit
χ2 test or a multiple sample Kolmogorov-Smirnov.  A review of these tests is given in D'Agostino and
Stephens (1986, chapter 9).  They showed that the χ2 test and Kolmogorov test have poor power
properties and should not be used when testing for normality.

Unfortunately, the preceeding results are not widely known to nonstatisticians.  Major
statistical packages, such as SAS, perform the Shapiro-Wilk, W test for group size up to 50.   For
larger group size, SAS provides us with the poor power Kolmogorov test.   This package also
produces measures of skewness and kurtosis, though strictly speaking these are not the actual
measures of skewness !b1 and kurtosis b2 defined as

In a recent article by D'Agostino et al. (1990) the relationship between b1 and b2 and the
measures of skewness and kurtosis produced by SAS is established.  Also provided is a simple SAS
macro which produces an excellent, informative analysis for investigating normality.  They
recommended that, as descriptive statistics, values of !b1 and b2 close to 0 and 3 respectively,
indicate normality.  More precisely, the expected values of these are 0 and 3(n-1)/(n+1) under
normality.

To test for skewness, the null hypothesis, H0: underlying population is normal   is tested as
follows (D'Agostino and Pearson 1973):  

1.  Compute !b1 from the data.  
2.  Compute
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Z(!b1) has approximately standard normal distribution, under the null hypothesis.

To test for kurtosis, a two-sided test (for β2"3) or one-sided test (for β2>3 or β2<3) can be
constructed:

1. Compute b2 from the data.  

2. Compute

and

3. Compute the standardized score of b2.  That is
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4. Compute

and

5. Compute

Z(b2) has approximately standard normal distribution, under the null hypothesis.
D'Agostino and Pearson (1973) constructed a test based on both !b1 and b2 to test for

skewness and kurtosis.  This test is given by

and has approximately a chi-square distribution with 2 degrees of freedom.

For routine evaluation of the statistic K2, the SAS package produces measures of skewness
(g1) and kurtosis (g2) that are different from !b1 and b2.  After obtaining g1 and g2 from PROC
UNIVARIATE in SAS, we evaluate !b1 as

and

One then should proceed to compute Z(!b1) and Z(!b2) and hence K2.

Note that when n is large, !b1 # g2 and b2 # g2.

An equally important tool that should be used to assess normality is graphical representation



of the data.  A very effective technique is the empirical quantile-quantile plot (Wilk and
Gnanadesikan, 1968).  It is constructed by plotting the quantiles of the empirical distribution against
the corresponding quantiles of the normal distribution.  If the quantiles plot is a straight line, it
indicates that the data is drawn from a normal population.

A good complete normality test would consist of the use of the statistic K2 and the normal
quantile plot.

Note that if the empirical quantile-quantile plot follows a straight line one can be certain, to
some extent, that the data is drawn from a normal population.  Moreover, the quantile-quantile plot
provides a succinct summary of the data.  For example if the plot is curved this may suggest that a
logarithmic transformation of the data points could bring them closer to normality.  The plot also
provides us with a useful tool for detecting outlying observations.

In addition to the quantile-quantile plot, a box plot (Tukey, 1977) should be provided for the
data.  In the box plot the 75th and 25th percentiles of the data are portrayed by the top and bottom
of a rectangle, and the median is portrayed by a horizontal line segment within the rectangle.  Dashed
lines extend from the ends of the box to the adjacent values which are defined as follows.  First the
inter-quantile range IQR is computed as: 

IQR = 75th percentile - 25th percentile.  

The upper adjacent value is defined to be the largest observation that is less than or equal to the 75th
percentile plus (1.5) IQR.  The lower adjacent value is defined to be the smallest observation that is
greater or equal to the 25th percentile minus (1.5) IQR.  If any data point falls outside the range of
the two adjacent values, it is called an outside value (not necessarily an outlier) and is plotted as an
individual point.

The box-plot displays certain characteristics of the data.  The median shows the center of the
distribution; and the lengths of the dashed lines relative to the box show how far the tails of the
distribution extend.  The individual outside values give us the opportunity to examine them more
closely and subsequently identify them as possible outliers.

Example 1.1 120 observations representing the average milk production per day/herd in kilograms
were collected from 10 Ontario farms (see; Appendix 1).  All plots are produced by
SAS.

A data summary via the box plot is shown in Figure 1.1  For illustrative purposes Figure 1.2 is the
normal quantile plot of the data.  Ignoring the identification by farm, there is a slight departure from
the straight line that would be expected if the data were drawn from a normal population.  The
summary statistics produced by SAS UNIVARIATE PROCEDURE are given in Table 1.1.



Table 1.1
Output of the SAS UNIVARIATE PROCEDURE on the Original Data.

Variable = Milk
Moments

N
Mean
Std Dev
Skewness
USS
CV
T:Mean=0
Sgn Rank
Num ^= 0
W:Normal

120
26.74183
3.705186
-0.54127
87448.76
13.85539
79.06274
3630
120
0.970445

Sum Wgts
Sum
Variance
Kurtosis
CSS
Std Mean
Prob>|T|
Prob>|S|

Prob<W

120
3209.02
13.7284
0.345688
1633.68
0.338236
0.001
0.001

0.1038

The result of D'Agostino et al (1990) procedure is summarized in Table 1.2.

Table 1.2
Results of a Normality Test on the Original Data Using a SAS Macro Written by D'Agostino et al (1990)

SKEWNESS g1=-0.54127 b1=-0.53448 Z(!b1)=-2.39068 p=0.0168

KURTOSIS g2=0.34569 b2=3.28186 Z(!b2)=0.90171 p=0.3672

OMNIBUS TEST K2=6.52846  (against chisq 2df) p=0.0382

The value of the omnibus test (6.528), when compared to a chi squared value with 2 degrees
of freedom (5.84) is found to be significant.  Thus, based on this test, we can say that the data are not
normally distributed.   

In attempting to improve the normality of the data, it was found that the best results were
obtained through squaring the milk yield values.  This solved the skewness problem and resulted in
a non significant K2 value (Table 1.3).  Combined with the normal probability plot (Figure 1.3)
produced by the D'Agostino et al. (1990) macro, one can see that the data has been normalized.

Table 1.3
Results of a Normality Test on the Transformed Data (Milk2)

SKEWNESS g1 = -0.11814 b1 = 0.11666 Z = -0.54876 p = 0.5832

KURTOSIS g2 = -0.03602 b2 = 2.91587 Z = 0.00295 p = 0.9976

OMNIBUS
TEST

K2 = 0.30115  p = 0.860



   Stem Leaf                     #  Boxplot
     35 7                        1     |
     34 4                        1     |
     33                                |
     32 03                       2     |
     31 00146789                 8     |
     30 001233444667889         15     |
     29 112234557799            12  +-----+
     28 11233477                 8  |     |
     27 11122255568             11  |     |
     26 01112334446677888899    20  *--+--*
     25 122667999                9  |     |
     24 14678                    5  +-----+
     23 0223566889              10     |
     22 33556                    5     |
     21 07799                    5     |
     20 00                       2     |
     19 17                       2     |
     18 38                       2     |
     17
     16 3                        1     0
     15 4                        1     0
        ----+----+----+----+

Figure 1.1. Stem leaf and box plot illustration of the milk production on 10 herds; the data are
untransformed.

Variable=MILK
    35.5+                                                ++*
        |                                             ++*
    33.5+                                          +++
        |                                        ++  **
    31.5+                                     ++*****
        |                                 ******
    29.5+                              ****
        |                            **++
    27.5+                          ***
        |                     *****
    25.5+                   ***+
        |                  **+
    23.5+               ****
        |             ***
    21.5+          ***
        |       +++*
    19.5+     ++***
        |  +++**
    17.5+++
        |   *
    15.5+*
         +----+----+----+----+----+----+----+----+----+----+

             -2        -1         0        +1        +2

Figure 1.2   The normal quantile plot for the untransformed data of Example 1.1.



1388.79 +
        |
        |
        |
SQMILK  |
        |                                                          *
        |
        |
        |
1196.95 +
        |                                                       *
        |
        |
        |
        |
        |
        |                                                    *
        |                                                  **
1005.12 +                                               ***
        |                                              *
        |                                            ***
        |                                          **
        |                                        **
        |                                      **
        |                                     **
        |                                   ***
        |                                   *
 813.28 +                                   *
        |                                 **
        |                                 *
        |                               **
        |                              **
        |                            ***
        |                          ***
        |                         **
        |                        *
 621.45 +                       **
        |                       *
        |                      *
        |                    **
        |                   **
        |                  **
        |                 *
        |               **
        |              *
 429.61 +
        |             *
        |            *
        |           *
        |        * *
        |
        |
        |
        |      *
 237.78 +  *
        ---+----------+----------+----------+----------+----------+----------+--
        -2.562     -1.562     -0.562      0.438      1.438      2.438      3.438
                                RANK FOR VARIABLE SQMILK

Figure 1.3  Normal plot produced by D'Agostino et al (1990) macro using the transformed milk yield
                  data.
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B. HETEROGENEITY OF VARIANCES

The effect of unequal variances on the F-test of the ANOVA problem had been investigated
by Box (1954a).  He showed that in balanced experiments (i.e. when n1=n2=...=nk) the effect
of heterogeneity is not too serious.  When we have unbalanced experiments then the effect can be
more serious, particularly if the large "i

2 are associated with the small ni.  The recommendation
is to balance the experiment whenever possible, for then unequal variances have the least effect.

Detecting heterogeneity or testing the hypothesis H0:"1
2="2

2=...="k
2, is a problem that

has applications in the field of measurement errors, particularly reproducibility and reliability
studies as will be seen in the next chapter.  In this section we introduce some of the widely used
tests of heterogeneity. 

1. Bartlett's Test

Bartlett (1937) modified the likelihood ratio statistic on H0:"1
2="2

2=..."k
2 by introducing

a test statistic widely known as Bartlett's test on homogeneity of variances.  This test statistic is
given as

where

and

The hypothesis of equal variances is rejected if B > χ2
α,k-1.
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One of the disadvantages of Bartlett's test is that it is quite sensitive to departure from normality.  In
fact, if the distributions from which we sample are not normal, this test can have an actual size several
times larger than its nominal level of significance.

2. Levene's Test (1960)

The second test was proposed by Levene (1960).  It entails doing a one-way ANOVA on the
variables

If the F-test is significant, homogeneity of the variances is in doubt.  Brown and Forsythe (1974a)
conducted extensive simulation studies to compare between tests on homogeneity of variances and
reported the following.

(i)  If the data are nearly normal, as evidenced by the previously outlined test of normality, then we
should use Bartlett's test which is equally suitable for balanced and unbalanced data.

(ii)  If the data are not normal, Levene's test should be used.  Moreover, if during the step of detecting
normality we find that the value of !b1 is large, that is if the data tend to be very skewed, then
Levene's test can be improved by replacing ̄yi by ỹi, where ỹi is the median of the ith group.  Therefore
L̃ij = $yij-ỹi$, and an ANOVA is done on L̃ij.  The conclusion would be either to accept or reject
H0:σ1

2=...=σk
2.  If the hypothesis is accepted, then the main hypothesis of equality of several means

can be tested using the familiar ANOVA.

If the heterogeneity of variances is established, then it is possible to take remedial action by
employing transformation on the data.  As a general guideline in finding an appropriate
transformation, first plot the k pairs (ȳi, si

2) i=1,2...k as a means to detect the nature of the relation-
ship between ̄yi and si

2.  For example if the plot exhibits a relationship that is approximately linear we
may try log yij.  If the plot shows a curved relationship we suggest the square root transformation.
Whatever transformation is selected, it is important to test the variance heterogeneity on the
tranformed data to ascertain if the transformation has in fact stabilized the variance.

If attempts to stabilize the variances through transformation are unsuccessful, several
approximately valid procedures to compare between group means in the presence of variance
heterogeneity, have been proposed.  The most commonly used are:

3.  Welch's Statistic (1951) for Testing Equality of Group Means:

where
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When all population means are equal (even if the variances are unequal), WL is approximately
distributed as an F-statistic with k-1 and f1 degrees of freedom,
where

4. Brown and Forsythe Statistic (1974b) for Testing Equality of Group Means:

where

Approximate critical values are obtained from the F-distribution with k-1 and f2 degrees of freedom,
where

and
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Remarks:

1. The approximations WL and BF are valid when each group has at least 10 observations and
are not unreasonable for WL when the group size is as small as five observations per group.

2. The choice between WL and BF depends upon whether extreme means are thought to have
extreme variance in which case BF should be used.  If extreme means have smaller variance,
then WL is preferred.  Considering the structure of BF, Brown and Forsythe recommend the
use of their statistic if some sample variances appear unusually low.

5. Cochran's (1937) Method of Weighting for Testing Equality of Group Means:

To test the hypothesis H0:µ1=µ2=...=µk=µ, where µ is a specified value, Cochran suggested
the weighted sum of squares

as a test statistic on the above hypothesis.
The quantity G follows (approximately) a χk

2 distribution.  However, if we do not wish to
specify the value of µ it can be replaced by 

!
y and then G becomes

It can be shown that, under the null hypothesis of equality of means, ! is approximately distributed
as χ2

k-1; the loss of 1 degree of freedom is due to the replacement by µ by 
!
y.  Large values of Ĝ

indicate evidence against the equality of the means.

Example 1.2. In this example we analyze the milk data (untransformed).  The main objective of this example
is to assess the heterogeneity of variances amongst the 10 farms.  Further summary statistics
are provided in Table 1.4.



Table 1.4
Summary Statistics for Each of the Ten Farms

Farm Mean ni Std. Dev. si
2

1 30.446 12 1.7480 3.0555

2 29.041 12 2.9314 8.5931

3 24.108 12 3.3302 11.0902

4 27.961 12 3.2875 10.8077

5 29.235 12 1.7646 3.1138

6 27.533 12 2.1148 4.4724

7 28.427 12 1.9874 3.9498

8 24.473 12 1.8912 3.5766

9 24.892 12 1.7900 3.2041

10 21.303 12 3.8132 14.5405

The value of the Bartlett's statistic is B=18.67, and from the table of chi-square at 9 degrees of freedom,
the p-value  0.028.  Therefore there is evidence of variance heterogeneity.%

However, after employing the square transformation on the data (see summary statistics in Table
1.5) the Bartlett's statistic is B=14.62 with p-value  0.102.%

Hence, by squaring the data we achieve two objectives; first the data were transformed to normality;
second, the variances were stabilized.

Table 1.5
Summary Statistics on the Transformed Data (Milk2) for Each of the Ten Farms

Farm Mean ni Std. Dev. s2

1 929.75 12 109.020 11885.36

2 851.25 12 160.810 25.859.86

3 591.34 12 158.850 25233.32

4 791.72 12 195.020 38032.80

5 857.54 12 102.630 10532.92

6 762.18 12 116.020 13460.64

7 811.74 12 113.140 12800.66

8 602.22 12 92.774 8607.02

9 622.53 12 88.385 7811.91

10 467.13 12 165.080 27251.41



Example 1.3 The following data are the results of a clinical trial involving 4 groups of dogs
assigned at random to each of 4 therapeutic drugs believed to treat compulsive
behaviour.  The scores given in Table 1.6 are measures of the severity of the
disorder after 21 days of treatment.  Before comparing the mean scores, we test the
homogeneity of variances using Levene's test.

Table 1.6
Scores of 4 Drugs Given to Dogs in a Clinical Trial

Drug Score

1 5 10 2 10 10 4

2 1 2 5 2 5

3 8 10 4 5 10 10

4 9 8 7 9 3 10

The estimated variances are s1
2=12.97, s2

2=3.5, s3
2=7.37, s4

2=6.27

Table 1.7 gives the location free scores Lij! |yij" ȳi |

Table 1.7
The Location Free Score Lij= $$$$yij-ȳi $$$$ for the Data of Table 1.6

Drug Score (Lij)

1 1.83 3.17 4.83 3.17 3.17 2.83

2 2 1 2 1 2

3 0.17 2.170 3.83 2.13 2.17 2.17

4 1.33 0.33 0.67 1.33 4.67 2.33

In Table 1.8 we provide the result of the ANOVA on Lij; the F-statistic = 2.11 with P-value =
0.133.  This indicates that there is no significant difference between the variances of the 4 groups
even though visually the estimated variances seem quite different from each other.

Table 1.8
ANOVA of Lij

Source df Sum Square Mean Square F Value Pr>F

Model 3 8.47824 2.82608 2.11 0.1326

Error 19 25.4350 1.33868

Corrected Total 22 33.9132
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Levene's test could not detect this heterogeneity because the sample sizes and the number of
groups are small.  This lack of power is a common feature of many nonparametric tests such as
Levene's.

C. NON-INDEPENDENCE

A fundamental assumption in the analysis of group means is that the samples must be
independent, as are the observations within each sample.  For now, we shall analyze the effect of
within sample dependency with emphasis on the assumption that the samples or the groups are
independent of each other.

Two types of dependency and their effect on the problem of comparing means will be
discussed in this section.  The first type is caused by a sequence effect.  The observations in each
group may be taken serially over time in which case observations that are separated by shorter
time intervals may be correlated because the experimental conditions are not expected to change,
or because the present observation may directly affect the succeeding one.  The second type of
correlation is caused by blocking effect.  The ni data points yi1...yini may have been collected as
clusters.  For example the y's may be collected from litters of animals, or from "herds".  The
possibility that animals or subjects belonging to the same cluster may respond in a similar manner
(herd or cluster effect) creates a correlation that should be accounted for.  The cluster effect can
be significantly large if there are positive correlations between animals within clusters or if there
is a trend between clusters.  This within herd correlation is known as the intracluster correlation
and will be denoted by #.

Before we examine the effect of serial correlation on comparing group means, we shall
review its effect on the problem of testing one mean, that is its effect on the t-statistic.

The simplest time sequence effect is of a serial correlation of lag 1.  Higher order lags are
discussed in Albers (1978).  Denoting y1...yn as the sample values drawn from a population with
mean µ and variance "2, we assume that

Cov ( yi ,yi+j ) =     j=0,1ρjσ2

$   0 otherwise

 
When n is large, the variance of ȳ is given approximately as
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and since the parameters "2 and # are unknown we may replace them by their moment estimators

and

Note that the var (ȳ) in the presence of serial correlation is inflated by the factor d=1+2ρ.  This means
that if we ignore the effect of ρ the variance of the sample mean would be under estimated.  The t-
statistic thus becomes

t !
n (y"µ)

s 1#2ρ̂
. (1.11)

To illustrate the unpleasant effect of ρ̂ on the p-value, let us consider the following hypothetical
example.   Suppose that we would like to test H0:µ=30 versus H1:ȳ>30.  The sample information is,
ȳ=32, n=100, s=10, and ρ̂=0.30.  Therefore, from equation (1.11), t=1.58, and the p-value  0.06.#
If the effect of ρ̂ were ignored, then t=2.0 and the p-value 0.02.#

This means that significance will be spuriously declared if the effect of ρ̂ is ignored.

Remark: It was recommended by Miller (1986) that a preliminary test of ρ=0 is unnecessary, and that
it is only the size of ρ̂ that is important.

We now return to the problem of comparing group means.  If the observations within each
group are collected in time sequence, we compute the serial correlations ρ̂i (i=1,2,...k).  Few papers
researching the effect of serial correlation on the ANOVA F statistic are available. We shall report
on their quantitative merits in Chapter 6, which is devoted to the analysis of repeated
measurements.  However, the effect of correlation can be salvaged by using the serial correlation
estimates together with one of the available approximate techniques.  As an illustration; let yi1,yi2,...yini

be the observations from the ith group and let ȳi, and si
2 be the sample means and variances

respectively.  If the data in each sample are taken serially, the serial correlation estimates are ρ̂1

ρ̂2,...,ρ̂k.  Since the estimated variance of ȳi is
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then wi=vi
-1 can be used to construct a pooled estimate for the group means under the hypothesis

H0:µ1=...=µk.  This estimate is

The hypothesis is thus rejected for values of

exceeding χ2
k-1 at the α-level of significance.

To account for the effect of intraclass correlation a similar approach may be followed.
Procedures for estimating the intraclass correlation will be discussed in Chapter 2.

Example 1.4 The data are the average milk production per cow per day, in kilograms, for 3 herds
over a period of 10 months (Table 19).  For illustrative purposes we would like to use
Cochran's statistic ! to compare between the herd means.  Because the data were
collected in serial order one should account for the effect of the serial correlation.

Table 1.9
Milk Production Per Cow Per Day in Kilograms for 3 Herds Over a Period of 10 Months.

Farm Months

1 2 3 4 5 6 7 8 9 10

1 25.1 23.7 24.5 21 19 29.7 28.3 27.3 25.4 24.2

2 23.2 24.2 22.8 22.8 20.2 21.7 24.8 25.9 25.9 25.9

3 21.8 22.0 22.1 19 18 17 24 24 25 19

The estimated variances and serial correlations of the 3 herds are: s1
2=9.27, s2

2=3.41, s3
2=6.95,

#̂1=0.275, ̂#2=.593, and ̂#3=0.26.  Therefore v1=1.36, v2=0.75, and v3=1.06.  Since =6.13,Ĝ
the p-value < 0.05, one concludes that the hypothesis of no difference in mean milk production
cannot be accepted.



Remarks on SAS programming:

We can test the homogeneity of variances (HOVTEST) of the groups defined by the MEANS effect

within PROC GLM. This can be done using either Bartlett’s test (1.4) or Levene’s test by addingi jL
the following options to the MEANS statement :

MEANS  group  |  HOVTEST = BARTLETT;   or
      HOVTEST = LEVENE (TYPE = ABS);



Chapter 2

STATISTICAL ANALYSIS OF MEASUREMENTS RELIABILITY

"The case of interval scale measurements"

I. INTRODUCTION

The verification of scientific hypotheses is only possible by the process of experimentation,
which in turn often requires the availability of suitable instruments to measure materials of interest
with high precision.

The concepts of "precision" and "accuracy" are often misunderstood.  To correctly
understand such concepts, modern statistics provides a quantitative technology for experimental
science by first defining what is meant by these two terms, and second, developing the appropriate
statistical methods for estimating indices of accuracy of such measurements.  The quality of
measuring devices is often described by reliability, repeatability (reproducibility) and
generalizability, so the accuracy of the device is obviously an integral part of the experimental
protocol.

The reader should be aware that the term "device" refers to the means by which the
measurements are made, such as the instrument, the clinician or the interviewer.  In medical
research, terms such as patient reliability, interclinician agreement, and repeatability are
synonymous with a group of statistical estimators which are used as indices of the accuracy and
precision of biomedical measurements.  To conduct a study which would measure the reliability
of a device, the common approach is to assume that each measurement consists of two parts, the
true unknown level of the characteristic measured (blood pressure, arm girth, weight etc.) plus an
error of measurement.  In practice it is important to know how large or small the error variance,
or the imprecision, is in relation to the variance of the characteristic being measured.  This
relationship between variances lays the ground rules for assessing reliability.  For example, the
ratio of the error variance to the sum of the error variance plus the variance of the characteristic
gives, under certain conditions, a special estimate of reliability which is widely known as the
intraclass correlation (denoted by !).  There are numerous versions of the intraclass correlation,
the appropriate form for the specific situation being defined by the conceptual intent of the
reliability study.

The main objective of this chapter is to provide the readers with guidelines on how to use
the intraclass correlation as an index of reliability.
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II.  MODELS FOR RELIABILITY STUDIES

An often encountered study for estimating ! assumes that each of a random sample of k
patients is evaluated by n clinicians.

Three different cases of this kind of study will be investigated.  For each of these, a
description of the specific mathematical models that are constructed to evaluate the reliability of
measurements is given.

A.  CASE 1:  THE ONE-WAY RANDOM EFFECTS MODEL

This model has each patient or subject being measured (evaluated) by the same device.

Let yij denote the jth rating on the ith patient (i=1,2,...k ; j=1,2,...n).  It is quite possible
that each patient need not be measured a fixed number of times n, in which case we would have
unbalanced data where j=1,2,...ni.  In general we assume the following model for yij

where µ is the overall population mean of the measurements; gi is the true score of the ith patient;
and eij is the residual error.  It is assumed that gi is normally distributed with mean zero and
variance "g

2 and independent of eij.  The error eij is also assumed to be normally distributed with
mean zero and variance "e

2.  The variance of yij is then given by "y
2 = "g

2+"e
2.  

Since 

Cov (yij, yil) = "g
2            i=1,2,...k ; j!l=1,2,...ni

the correlation between any pair of measurements on the same patient is

This model is known as the components of variance model, since interest is often focused on
estimation of the variance components "g

2 and "e
2.  The ANOVA corresponding to (2.1) is shown

in Table 2.1. In this table,



N ! !
k

i!1
ni , y i !

1
ni

!
ni

j!1
yij , and y !

1
N !

k

i
!
ni

j
yij ,

no !
1

k#1
N # !

k

i!1
n 2

i / N .

r1 ! σ̂2
g / (σ̂2

g " σ̂2
e) !

MSB#MSW
MSB"(no#1)MSW

. (2.2)

and

Since unbiased estimators of "e
2 and "g

2 are given respectively by "̂e
2 = MSW and 

"̂g
2 = (MSB-MSW)/no, it is natural to define the ANOVA estimator of ! as

This estimator of reliability is biased.

Table 2.1
The ANOVA Table Under the One-way Random Effects Model.

Source of
Variation

D.F. S.S. M.S. E(M.S.)

Between 
Patients

K-1 SSB!!
K

i!1
ni(y i#y)2 MSB=SSB/(K-1) (1+(n0-1)!)"y

2

Within
Patients

N-K
SSW!!

K
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ni

j!1
(yij#y i)

2 MSW=SSW/(N-K) (1-!)"y
2

Total N-1
SST!!

K

i!1
!
ni

j!1
(yij#y)2

When we have moderately large number of subjects (patients, slides, ... etc) a reasonably good
approximation to the variance of r1 derived by Smith (1956) is given by
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where

Donner and Wells (1985) showed that an accurate approximation of the confidence limits
on ! for moderately large k, is given by:

where v̂(r1) is defined in (2.3), with r1 replacing !, and Z#/2 is the two-sided critical value of the
standard normal distribution corresponding to the #-level.

Note that the results of this section apply only to the estimate of reliability obtained from
the one-way random effects model.

B.  CASE 2:  THE TWO-WAY RANDOM EFFECTS MODEL

In this model, a random sample of n clinicians is selected from a larger population and each
clinician evaluates each patient.

When the n raters, clinicians or devices that took part in the reliability study are a sample
from a larger population, the one-way random effects model should be extended to include a
rater's effect, so that 

This is the so-called two-way random effects model, where the quantity cj, which characterizes
the additive effect of a randomly selected rater, is assumed to vary normally about a mean of zero
with variance "c

2.  The three random variables g,c, and e are assumed mutually independent.  The
variance of yij is

and the covariance between two measurements on the same patient, taken by the lth and jth raters
is   .Cov (yij ,yil ) ! σ

2
g
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Hence the intraclass correlation to be used as an appropriate measure of reliability under this
model is,

Table 2.2

The ANOVA Table Under the Two-way Random Effects and Mixed Effects Models

Source of
Variation

D. F. S.S. M.S. Raters Random
(Case 2)

Raters Fixed (Case 3)

Patients k-1 PMS

Raters n-1 CMS

Error (k-1)(n-1) MSW

Total

The unbiased variance components estimates of "g
2, "c

2, and "e
2 are given respectively as

      .!σ e M SW2 =
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(2.8)

An estimator of reliability is then

a formula that was derived by Bartko (1966).

C.  CASE 3:  THE TWO-WAY MIXED EFFECTS MODEL

What typifies this model is that each patient is measured by each of the same n raters, who
are the only available raters.  Furthermore, under this model, the raters taking part in the study
are the only raters about whom inferences will be made.  In the terminology of the analysis of
variance, the raters effect is assumed fixed.  The main distinction between Case 2  (where
clinicians are considered random) and Case 3 (where clinicians are considered fixed) is that under
Case 2 we wish to generalize the findings to other raters within a larger group of raters, whereas
in the Case 3 situation we are only interested in the group that took part in the study.

Following Fleiss (1986), yij is written as

Here, d1, d2,...dn are no longer random, rather they are assumed to be a set of fixed constants, and

The assumptions on gi and eij are the same as those of Cases 1 and 2.  The ANOVA for this case
is provided by Table 2.2.

Under this model, the appropriate measure of reliability from Fleiss (1986), is given as

Fleiss (1986) describes the following sequential approach to estimating r3.

1- Test for clinician to clinician variation to see if clinicians differ significantly from one
another.  To test this hypothesis (H0: d1 = d2 = ..=dn = 0) one would compare the ratio
F=CMS/MSW to tables of the F distribution with (n-1) and (n-1)(k-1) degrees of freedom.
Acceptance of the null hypothesis would imply the absence of inter-clinician bias, thus one could
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estimate the reliability using (equation 2.8).  If F>F(n-1),(n-1)(k-1),# then the null hypothesis is rejected
indicating that differential measurement bias exists.

2- When the above hypothesis is rejected, the clinician or the rater responsible for most of
the significance of the differences among the raters should be determined.  There is no doubt that
the estimated reliability will be higher if this rater is removed.

For example, if the jth rater is the one in doubt we form the following contrast

with a standard error

The jth rater is considered non-conforming if    exceeds " t(n-1)(k-1),#/2 ", in which caseL
SE (L )

 a recommended strategy is to drop this rater, construct a new ANOVA, and estimate reliability
using (2.8).

Example 2.1

In this example, the following data will be analyzed as Case 1, Case 2 and Case 3 situations.  An
analytical chemist wishes to estimate with high accuracy the critical weight of chemical compound.
She has 10 batches and 4 different scales. Each batch is weighed once using each of the scales.
A SAS program which outlines how to create the output for the data described in Table 2.3 is
given below.

Table 2.3
Critical Weights of a Chemical Component Using 4 Scales and 10 Batches.

Scale 1 2 3 4 5 6 7 8 9 10

1 55 44.5 35 45 50 37.5 50 45 65 58.5

2 56 44.5 33 45 52 40 53 50 66 56.5

3 65 62 40 37 59 50 65 50 75 65

4 58.5 45 35.5 37 55 40 48 47 79 57



EXAMPLE SAS PROGRAM

data chemist;
input scale batch y;
cards;
1 1  55
1 2  44.5
1 3  35
....

4 7  48
4 8  47
4 9  79
4 10 57
;

/** one way **/
proc glm data=chemist;
class batch;
model y=batch;
run;

/** two way - random mixed **/
proc glm data=chemist;
class batch scale;
model y=batch scale;
run;

/** two way dropping scale 3 **/
data drop3;
set chemist;
if scale=3 then delete;

proc glm data=drop3;
class batch scale;
model y=batch scale;
run;

As a Case 1 Situation:

Treating this as a Case 1 situation by ignoring the scale effect (which means that the order of the
measurements of weights 'within' a batch does not matter), the measurement reliability is
computed as r1 (see equation 2.2).

Extracts from the ANOVA tables in the SAS  OUTPUT are given here:

Source DF Sum Squares Mean Square  F value Pr>F

Model 9 3913.881250 434.875694  14.60 0.0001
Error 30 893.562500 29.785417
C Total 39 4807.443750



L ! ȳ.3 #
1
3

( ȳ.1" ȳ.2" ȳ.4 )

SE(L) !
(n)(MSW)

k(n#1)

1
2

Therefore, r1 = [434.875694 - 29.785417]/[434.875694 + (4-1)(29.785417)]
= 0.773

This is an extremely good reliability score based on the 'standard values'  of comparison which
are:  excellent (>.75),  good (.40, .75) and poor (< .40).

As a Case 2 Situation:

The ANOVA OUTPUT for the two-way random effects model that results is,

Source DF Sum Squares Mean Square  F Value Pr>F

Model 12 4333.0000 361.083333  20.55 0.0001
BATCH 9 3913.88125 434.875694  24.75 0.0001
SCALE 3 419.11875 139.706250  7.95 0.0006
Error 27 474.118750 17.571991
C Total 39 4807.44375

Therefore, r2 (equation 2.6) is computed as,
r2 = 10[434.8757 - 17.572] /[(10)(434.8757) + (4-1)(139.70625) + (4-1)(10-1)(17.571991)] 
   = 0.796

Again, this value indicates an excellent measure of reliability, but note that the scale effect is
highly significant (p=0.0006).

As a Case 3 Situation:

First of all we can test whether Scale 3 is significantly 'deviant', by using the contrast,

with standard error,

Thus, L = 7.35, SE(L) = 1.5307 and L/SE(L) = 4.802.

Since 4.802 exeeds the value of t = 2.052 (27 df at # = 0.05), there is reason to remove this
'deviant' scale.

Now, by removing the 'deviant' scale (scale 3) we can recalculate the reliability measure under
the fixed effects model.
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The ANOVA for the two-way mixed effects model that results is,

Source DF Sum Squares Mean Square  F Value Pr>F

Model 11 2865.45833 260.496212  22.85 0.0001
BATCH 9 3913.88125 434.875694  27.79 0.0001
SCALE 2 13.9500         6.975000  0.61 0.5533
Error 18 205.216667   11.400926
C Total 29 3070.6750

Note that after removing scale 3 the F-value of the scale effect is no longer significant.  In
calculating r3  (equation 2.8),

r3!10[316.834#11.4009] / [ (10)(316.8343" (3#1)(6.975)" (10#1)(3#1)(11.4009)] ! 0.911

We can see that the removal of the 3rd scale has resulted in a considerable improvement in the
reliability score, thus, if the scales are considered a fixed effect, it would be wise to drop the third
scale.

D.  COVARIATE ADJUSTMENT IN THE ONE-WAY RANDOM EFFECTS MODEL

Suppose that each of k patients is measured ni times.  In a practical sense, not all
measurements on each patient are taken simultaneously, but at different time points.  Since the
measurements may be affected by the time point at which they are taken, one should account for
the possibility of a time effect.  In general, let xij denote the covariate measurement of the ith

patient at the jth rating.  The one-way analysis of covariance random effects model is given by

where

and



x i !
1
ni

!
j

xij , y i !
1
ni

!
j

yij

y !
1
N !

i
!

j
yij ,

Eyy ! !
i
!

j

(yij#y i)
2 ,

Exx ! !
i
!

j

(xij#x i)
2

Exy ! !
i
!

j

(yij#yi)(xij#x i)

Tyy ! !
i
!

j
(yij#y)2

Txx ! ! ! (xij#x)2

Txy ! ! ! (yij#y)(xij#x)

Note that the assumptions for gi and eij as described in section A are still in effect.  This model is
useful when an estimate of the reliability , while controlling for a potentially confoundingρ
variable, such as time, is desired. 

Define:

 From Snedecor and Cochran (1980), the mean squares between patients and within patients, MSBx

and MSWx respectively, are given as:
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Stanish and Taylor (1983) showed that the estimated intraclass correlation which controls for the
confounder x is given as

where

III. COMPARING THE PRECISIONS OF TWO METHODS
 (GRUBBS, 1948 and SHUKLA, 1973)

In this section we will be concerned with the comparison of the performance of two
measuring methods, where every sample is measured twice by both methods.  This means that
each patient will provide four measurements.  The data layout is given in Table 2.4;  the
replications from the two methods are obtained from the same patient.  This produces estimates
of variance components and indices of reliability that are correlated, and hence, statistical
inference procedures need to be developed to deal with this situation.  

Table 2.4
Measurements from Two Methods Using k Patients

Patient

1 2 . . . . . k

Method(1) x11 x21 . . . . . xk1

x12 x22 . . . . . xk2

Method(2) y11 y21 . . . yk1

y12 y22 . . . yk2
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Let i=1,2,...kxij ! α"µ i"ξij
j=1,2yij ! α"µ i"ηij

where xij is the jth replication on the ith patient obtained by the first method and yij is the jth replication
on the ith patient obtained by the second method.

Let

Here, µi is the effect of the ith patient,  and  are the measurement errors.ξij ηij

Define the estimates of the variances and covariance as,

and

Assume that µi #N(0,σ2), ξij#N(0,σξ2), and ηij#N(0,ση2) and that µi, ξij and ηij are mutually
independent.  Thus,

and

Grubbs (1948) showed that the MLE of  σ2, σξ2 ,ση2, are given respectively as
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If we let ui = xi + yi

vi = xi - yi

then the Pearson's correlation between ui and vi is

The null hypothesis by which one can test if the two methods are equally precise is H0:σξ2 = ση2,
versus the alternative H1:σξ2 ! ση2. 

Shukla (1973) showed that H0 is rejected whenever 

exceeds "tα/2" where tα/2 is the cut-off point found in the t-table at (1-α/2) 100% confidence, and (k-2)
degrees of freedom.

Note that we can obtain estimates of reliability for method (1) and method (2) using the one-way
ANOVA.  Clearly such estimates are correlated since the same group of subjects is evaluated by both
methods.  A test of the equality of the intraclass correlations !1 and !2   must account for the
correlation between and .ρ̂1 ρ̂2

   Alsawalmeh and Feldt (1994) developed a test statistic on the null hypothesis .  Ho : ρ1 ! ρ2

They proposed rejecting H0 for extreme values of 
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where  is the one way ANOVA of !j.ρ̂ j

The statistic T, is approximately distributed as an F random variable with d1 and d2 degrees of
freedom, where,

and,
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The parameter   is the correlation between individual measurements xj and yj from the twoρ12
methods.  An estimate of    is given by, ρ12

Unfortunately, the test is only valid when k>50.

Example 2.2   Comparing the precision of two methods:

The following data (Table 2.5) were provided by Drs. Viel and J. Allen of the Ontario Veterinary
College in investigating the reliability of readings of bacterial contents from 15 samples of nasal
swabs taken from 15 animals with respiratory infection. 

Table 2.5
Bacterial Counts Taken by Two Raters on 15 slides; Two Readings For Each Slide

R
a
t
e
r

R
e
a
d
i
n
g

SLIDE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
1 52 68 106 98 40 87 98 98 122 66 80 94 98 105 93

2 62 62 104 98 46 77 107 101 113 75 89 99 98 77 105

2 1 72 68 102 71 77 78 89 75 105 71 92 88 82 74 116

2 93 63 61 79 44 90 98 88 109 71 82 73 92 72 98

Let X represent the mean values of readings 1 and 2 for rater 1 and Y represent the mean
values of readings 1 and 2 for rater 2.

Then, sxx = 411.817 syy = 172.995 sxy = 186.037

and, by Grubb's theorem,



t0 ! r
k#2

1#r 2
.

"̂2
$ = 2( sxx - sxy ) = 2(411.81667 - 186.0369)  =  451.156

"̂2
% = 2( syy - sxy ) = 2(172.99524 - 186.0369 ) = -26.083 $ 0

so, we can see that the variances of the random error are not equal.

Now, to test that the two methods are equally precise, that is to test the null hypothesis;

H0 : "
2
$ =  "2

%,

we define Ui = Xi + Yi   and   Vi = Xi - Yi .

Then the correlation between Ui and Vi is, r = .529, and the t-statistic is t0 = 2.249 where,

Since t0 exceeds t13,.025 = 2.160, we conclude that there is significant difference between the
precision of the two raters.

IV.  CONCORDANCE CORRELATION AS A MEASURE OF REPRODUCIBILITY

In this section our focus will remain on the statistical analysis of evaluating agreements between
two measuring devices, or alternately, "split halves", or repeated measures using the same
instrument.  It is quite common among clinicians and chemists, to use linear regression techniques
for the relative calibration of measuring instruments.  They are particularly fond of using Pearson
product-moment correlation as a measure of agreement between pairs of measurements.  Linear
regression is not appropriate when both measures are subject to error because product-moment
correlation coefficients are measures of association and are not suitable as indices of agreement.
Other commonly used methods of validation include, the paired t-test, the coefficient of variation,
and the simultaneous test of slope (=1) and intercept (=0) of the least squares regression line.  None
of these methods alone can fully assess the desired reproducibility characteristics.  For example, to
evaluate the blood cell counter for hematology analysis in a laboratory, it is desirable to have
duplicates of the same blood sample measured by the counter at different times (usually at most 1
day apart).  When we sketch the scatter plot of the first measurement against the second
measurement of the red blood cell counts for all blood samples available we hope to see, within
tolerance limits on the error, that the measurements fall on a 45° line through the origin (0,0).  The
Pearson product-moment correlation measures a linear relationship but fails to detect any departure
from the 45° line through the origin.  Figures 2.1a, 1b and 1c illustrate this situation.



a

b

c

Figure 2.1  Cases when the Pearson's product moment correlation attains its maximum value of
1, even though the agreement is poor.



t ! #4.24 , with p % 0.0001 .

F ! (MSE)#1 k α̂2"(β̂#1)2 !
k

i!1
x 2

i "2 k x α̂(β̂#1) ,

To show how the paired t-test falls short in the detection of poor agreement let us consider the
following numerical examples:

Example 2.3

x : 3 4 5 6 7
y : 5 5 5 5 5

       (p-value = 0.50).t !
n d̄
Sd

! 0

Here, even though there is virtually no agreement, we fail to reject the hypothesis H0:µx=µy.

Example 2.4

x : 4 5 6 7 8
y : 8.5 8.6 8.7 8.8 8.9

The Pearson's product correlation ( r ) is 1, even though the paired t-test on the hypothesis
H0:µx=µy is

Thus, despite the fact that the two sets of values do not agree, the value of r implies that there is total
agreement.  The worst is yet to come!

Suppose now we test the simultaneous hypothesis H0:intercept (α) = 0 and slope (β) = 1.  From
Leugrans (1980), the test statistic on the above hypothesis is

where α̂ and  are respectively the least squares estimates of the intercept and slope.  The MSE isβ̂
the residual mean square which can be obtained from the ANOVA of the regression line y=α+βx+ε.
The hypothesis H0:α=0, β=1 is rejected when F exceeds Fα,2,k-2.  From the definition of the test
statistic, we may fail to reject the hypothesis if data are very scattered (see Figure 2.2) . This means
that the more the data are scattered, or MSE is large (less agreement), the less chance one could
reject the above hypothesis.



On the other hand, based on the above statistic F, we can reject a highly reproducible technique, if
MSE is very small, which is also true when a paired t-test is used (see Figure 2.3)

To avoid the deficiencies of the paired t-test and Pearson's product correlation in the context of
reproducibility, Lin (1989) introduced a measure of reproducibility which he termed, "Concordance
Correlation Coefficient" denoted by ρc.  We shall show in a later chapter that ρc is analogous to
Cohen's weighted kappa which is used as a measure of agreement between two clinicians when the
response categories are ordinal.

Figure 2.2 H0:α=0; β=1 is not rejected even though data are very scattered.
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Figure 2.3 H0: α=0; β=1 is rejected where the technique is in fact highly reproducible.

  The concordance correlation coefficient of Lin is estimated by:

where
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In the case of large samples (that is when we have 30 or more subjects to measure), the standard
error of ρc is given by

where r is Pearson's product moment correlation, and

It should be noted that:

i) ρc = 0 if and only if r=0
ii) ρc = r if and only if µx=µy and σx=σy

iii) ρc = ±1 if and only if r=±1, σx=σy, and µx=µy

This concordance correlation ρc evaluates the degree to which pairs fall on the 45° line through
the origin (0,0).   Any departure from this line would produce ρc<1 even if r=1, an illustration of this
being found in Example 2.5.

Example 2.5

x : 4 5 6 7 8
y : 8.5 8.6 8.7 8.8 8.9

x̄ = 6, ȳ = 8.7, sx
2 = 2, sy

2 = 0.02 sxy = 0.2, and hence r = 1.  This gives ρc = 0.043, which is a very
poor agreement, even though Pearson's correlation attains its maximum value of 1.  The estimated
standard error of ρc is 0.0259.
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ȳ
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Remarks:

1.  Before the concordance correlation is computed, we recommend plotting half the

 difference between the two measurements    against their mean   .  
(xi # yi )

2

(xi " yi )

2

This plot can be useful in detecting systematic bias, outliers and whether the variance of the
measurements is related to the mean.  This approach was first suggested by Bland and Altman
(1986).  

2.  Assessing measurement reliability is a vast area of research that attracts the attention of
statisticians, quality assurance engineers, chemists, clinicians, and researchers in numerous other
disciplines.  The literature on this topic is quite voluminous and interesting; we refer the reader to
the recent review paper by Dunn (1992).  Judging by the work that has already been published, our
account of some of the methods of evaluating reliability is by no means exhaustive.  Indeed, we hope
to have shed some light on the complex nature of the particular designs that need to be used and their
importance in correctly analyzing the errors produced by measuring devices.

V.   ASSESSING REPRODUCIBILITY USING THE COEFFICIENT OF VARIATION

Quan and Shih (1996) noted that the intraclass correlation coefficient is study population
based since it involves between-subject variation. This may cause problems in comparing results
from different studies.  For example, a clinical test may be shown to be more reproducible just by
applying it to a more heterogeneous population (  is large) than a homogeneous population evenσ2

g
when the within-subject variation is the same.  To avoid this problem, they considered the within-
subject coefficient of variation (WCV) as an alternative measure of reliability; the smaller the WCV,
the better the reproducibility.  Under the one-way model of 2.1, the WCV is defined as

    and is estimated by:δ !
σe

µ

where  and MSW  are defined in part A, Case 1, of this chapter.  To construct confidence limits onȳ
, we need the standard error of WCV.  From Quan and Shih (1996), the estimated standard errorδ

of WCV (assuming that the data are normally distributed) is :
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Example 2.6

The following data (Table 2.6) are the systolic blood pressure scores of 10 patients.  Three
measurements were taken on each patient.  

Table 2.6
Blood Pressure Scores Taken on 10 Patients.

Patient
1 2 3 4 5 6 7 8 9 10

121 130 140 117 111 133 130 140 132 111
120 129 121 112 117 130 129 141 128 120
119 127 119 111 115 131 128 140 129 129

 

N=30,  k=10,   , ,   !
10

i!1
n 2

i ! 90 ȳ ! 125.33 MSW ! σ̂2
e ! 24.63 , σ̂2

g ! 61.57 .

Therefore, WCV=0.04;  its standard error is 0.02 with a 95% confidence interval on 
 of  (0.001, 0.08).δ

Note that ρ̂ ! 61.57
61.57"24.63

! 0.72 .

Remark:

The intraclass correlation coefficient is definitely a good measure of reliability.  In situations
where the reliability of two measuring devices are being compared, based on two independent
samples, we recommend comparing their WCV only if the sample means of all measurements
taken by the first method differ substantially from that of the second method. 



Chapter 3

STATISTICAL ANALYSIS OF CROSS CLASSIFIED DATA

I. INTRODUCTION

There are two broad categories of investigative studies that produce statistical data; the first
is designed controlled experiments and the second is observational studies.  Controlled
experiments are conducted to achieve the following two major objectives:  i)  To define with
absolute clarity and appreciable power the effects of the treatment (or combination of treatments)
structure, and  ii) to ensure maximum control on the experimental error.  There are several
advantages of studies run under controlled experiments, the most important being that it permits
one to disentangle a complex causal problem by proceeding in a stepwise fashion.  As was
suggested by Schlesselman (1982), within an experimental procedure the researcher can
decompose the main problem and explore each component by a series of separate experiments with
comparatively simple causal assumptions.

Observational studies are those which are concerned with investigating relationships among
characteristics of certain populations, where the groups to be compared have not been formed by
random allocation.  A frequently used example to illustrate this point is that of establishing a link
between smoking cigarettes and contracting lung cancer.  This cannot be explored using random
allocation of patients to smoking and non-smoking conditions for obvious ethical and practical
reasons.  Therefore, the researcher must rely on observational studies to provide evidence of
epidemiological and statistical associations between a possible risk factor and a disease.

One of the most common and important questions in observational investigation involves
assessing the occurrence of the disease under study in the presence of a potential risk factor.  The
most frequently employed means of presenting statistical evidence is the 2x2 table.  The following
section is devoted to assessing the significance of association between disease and a risk factor in
a 2x2 table.

II.  MEASURES OF ASSOCIATION IN 2X2 TABLES

In this section, an individual classified as diseased will be denoted by D, and by if notD̄
diseased.  Exposure to the risk factor is denoted by E and  for exposed and unexposedĒ
respectively.  Table 3.1 illustrates how a sample of size n is cross classified according to the above
notation.



p̂i. !
ni.
n

and p̂.j !
n.j

n

Table 3.1
Model 2x2 Table

Disease

Exposure D TotalD̄

E
Ē

n11

n21

n12

n22

n1.

n2.

Total n.1 n.2 n 

There are, in practice, several methods of sampling by which the above table of frequencies can
be obtained.  The three most common methods are the cross sectional (historical cohort study),
the cohort study (prospective design) and the case control study (retrospective design).  These are
described here with regards to the 2x2 table analysis.

A.  CROSS SECTIONAL SAMPLING

This method calls for the selection of a total of n subjects from a large population after
which the presence or absence of disease and the presence or absence of exposure is determined
for each subject.  Only the sample size can be specified prior to the collection of data.  With this
method of sampling, the issue of association between disease and exposure is the main concern.
In the population from which the sample is drawn the unknown proportions are denoted as in
Table 3.2.

Table 3.2
Model 2x2 Table

For Cross-Sectional Sampling

Disease

Exposure D TotalD̄

E
Ē

p11

p21

p12

p22

p1.

p2.

Total p.1 p.2 1 

Disease and exposure are independent if and only if pij=pi.p.j (i,j=1,2).  Assessing independence
based on the sample outcome is determined by how close the value of nij is to eij=n p̂i.p̂.j (the
expected frequency under independence), where



χ2 !! !
ij

(nij"eij)
2

eij
,

χ2 ! ! !
ij

(!nij"eij!"1/2)2

eij
.

G 2 ! 2 ! !
ij

nij ln nij"ln eij .

are the maximum likelihood estimators of pi. and p.j respectively.  There are two commonly used
measures of distance between nij and eij.  The first is the Pearson !2 statistic, where

which with Yate's continuity correction becomes,

The hypothesis of independence is rejected for values of !2 that exceed !"
2
,1 (the cut off value of

chi-square at "-level of significance and 1 degree of freedom).  The second is Wilk's statistic,

This statistic is called the likelihood-ratio chi-squared statistic; the larger the value  of G2, the
more evidence there is against the null hypothesis of independence.

When independence holds, the Pearson !2 statistic and the likelihood ratio statistic G2 have
asymptotic (i.e. in large samples) chi-squared distribution with 1 degree of freedom.  It is not a
simple matter to describe the sample size needed for the chi-square distribution to approximate
well the exact distributions of !2 and G2.  Two items of note in this regard are that for a fixed
number of cells (the case being discussed here), !2 converges more quickly than G2, and the chi-
square approximation is usually poor for G2 when n<20.  Further guidelines regarding sample
size considerations and the validity of !2 and G2 are given in Agresti (1990; page 246).

The most commonly used measures of association between disease and exposure are the
relative risk and the odds ratio.  To explain how such measures are evaluated, changes in notation
in the 2x2 table (Table 3.1) would be appropriate and are found in Table 3.3.



Pr[T]
1"Pr[T]

Table 3.3
Model 2x2 Table

Disease

Exposure D TotalD̄

E
Ē

n11"y1

n21"y2

n12"n1-y1

n22"n2-y2

n1

n2

Total y. n-y. n 

The following estimates obtained using the entries in Table 3.3, are of prime importance
to epidemiologists and health officials.

# Estimated risk of disease among those exposed to the risk factor:  

Pr[D!E] !
y1

n1

" p̂1

# Estimated risk of disease among those not exposed to the risk factor: 

Pr[D!E] !
y2

n2

" p̂2

# The risk of disease for those exposed to the risk factor relative to those not exposed is
called the relative risk (RR).

RR!

y1

n1

y2

n2

The relative risk represents how many times more (or less) likely disease occurs in the
exposed group as compared with the unexposed.  For RR > 1, a "positive" association is said to
exist, and for RR < 1, there is a negative association.

• The fourth extensively used estimate is the odds ratio.  Note that, if "T" is defined as an
"event", then the odds of this event would be written as
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Now, by defining T as "disease among the exposed", and in using this format, the odds of T
would be

Similarly we can take the event T to signify "disease among the unexposed", then

The odds ratio, denoted by #, is the ratio of these two odds, thus

The odds ratio is a particularly important estimator in at least two contexts.  One is that in the
situation of rare diseases, the odds ratio approximates relative risk, and secondly, it can be
determined from either cross sectional, cohort, or case-control studies as will be illustrated later
in this chapter.

B.  COHORT AND CASE-CONTROL STUDIES

In a cohort study, individuals are selected for observation and followed over time.
Selection of subjects may depend on the presence or absence of exposure to risk factors that are
believed to influence the development of the disease.

This method entails choosing and studying a predetermined number of individuals, n1 and
n2, who are exposed and not exposed, respectively.  This method of sampling forms the basis of
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prospective or cohort study, and retrospective studies.  In prospective studies, n1 individuals with,
and n2 individuals without, a suspected risk factor are followed over time to determine the number
of individuals developing the disease.  In retrospective case-control studies, n1 individuals are
selected due to having the disease (cases) and n2 non-diseased (controls) individuals would be
investigated in terms of past exposure to the suspected antecedent risk factor.

The major difference between the cohort and case-control sampling methods is in the
selection of study subjects.  A cohort study selects individuals who are initially disease free and
follows them over time to determine how many become ill.  This would determine the rates of
disease in the absence or presence of exposure.  By contrast, the case-control method selects
individuals on the basis of presence or absence of disease.

Recall that the odds ratio has been defined in terms of the odds of disease in exposed individuals
relative to the odds of disease in the unexposed.  An equivalent definition can be obtained in terms
of the odds of exposure conditional on the disease, so that the odds of exposure among diseased
and not diseased are:

and

The odds ratio of exposure in diseased individuals relative to the nondiseased is

Thus the exposure odds ratio defined by equation (3.2) is equivalent to the disease odds ratio
defined by equation (3.1).  This relationship is quite important in the design of case-control
studies.

III. STATISTICAL INFERENCE ON ODDS RATIO

Cox (1970) indicated that the statistical advantage of the odds ratio (OR) is that it can be
estimated from any of the study designs which were outlined in the previous section (prospective
cohort study, cross-sectional survey, and retrospective case-control study).

A problem that is frequently encountered when an estimate of OR is constructed is the
situation where n12 n21=0 in which case $ is undefined.  To allow for estimation under these
conditions, Haldane (1956) suggested adding a correction term %=½ to all four cells in the 2x2
tables, to modify the estimator proposed earlier by Woolf (1955).  The OR estimate is then given
by 
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.

 Adding !=½ to all cells gives a less biased estimate than if it is added only as necessary, such
as when a zero cell occurs (Walter 1985).  Another estimator of  was given by Jewell!"
(1984,1986) which is,

The correction of !=1 to the n12 and n 21 cells is intended to reduce the positive bias of the
uncorrected estimator  and also to make it defined for all possible tables.  Walter and Cook!"
(1991) conducted a large scale Monte-Carlo simulation study to compare among several point
estimators of the OR.  Their conclusion was that for sample size n!25,  has lower bias, mean-ψ J
square error, and average absolute error, than the other estimators included in the study.
Approximate variances of ,  and  are given by:ψ̂ ψ̂H ψ̂ J

that of  isψ̂H

and that of  isψ̂ J

Before we deal with the problem of significance testing of the odds ratio, there are several
philosophical points of view concerning the issue of "statistical" significance as opposed to
"scientific" significance.  It is known that the general approach to testing the association between
disease and exposure is verified by contradicting the null hypothesis H0:"=1 .   The p-value of
this test is a summary measure of the consistency of the data with the null hypothesis.  A small
 p-value is evidence that the data are not consistent with the null hypothesis (in this case implying
a significant association).  As was indicated by Oakes  (1986)  the p-value should be considered
only a guide to interpretation.  The argument regarding the role played by the p-value in
significance tests dates back to Fisher's work  (1932).  He indicated that the null hypothesis cannot
be affirmed as such but is possibly disproved.  On the other hand scientific inference is concerned
with measuring the magnitude of an effect, regardless of whether the data are consistent with the
null hypothesis.  Therefore, the construction of a confidence interval on  is very desirable as anψ
indication of whether or not the data contain adequate information to be consistent with the H0,
or to signal departures from the H0 that are of scientific importance.
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A. SIGNIFICANCE TESTS

The standard chi-square test for association in a 2x2 table provides an approximate test on
the hypothesis H0:#=1.  Referring to the notation in Table 3.3, the !2 statistic is given by

Under H0, the above statistic has an approximate chi-square distribution with one degree of
freedom, and is used in testing the two-sided alternative.  However, if there is interest in testing the
null hypothesis of no association against a one-sided alternative, the standard normal approximation

can be used.  In this case, the positive value is used for testing the alternative, H1:#>1; the
negative values test H1:#<1.  Quite frequently the sample size may not be sufficient for the
asymptotic theory of the chi-square statistic to hold.  In this case an exact test is recommended. The
evolution of Fisher's Exact Test will now be illustrated.  First let p11"p1  and p21"p2 be the
proportion of diseased individuals in the population of exposed and unexposed respectively.  Then,
two independent samples, n1 and n2 are taken from the exposed and unexposed population.
Referring to Table 3.3, it is clear that y1 and y2 are independent binomially distributed random
variables with parameters (n1,p1) and (n2,p2).  Hence their joint probability distribution is:

Under the transformation y.=y1+y2, equation (3.4) can be written as:

where #=p1q2/q1p2 is the population odds ratio parameter.  Clearly #=1 if and only if p1=p2.
Conditional on the sum y. , the probability distribution of y1 is

where
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Under the hypothesis; $=1, (3.5) becomes the hypergeometric distribution

The exact p-value of the test on the hypothesis $=1 is calculated from (3.6) by summing the
probabilities of obtaining all tables with the same marginal totals, with observed y1 as extreme as
that obtained from the sample.

Example 3.1

One of the researchers in VMI conducted a clinical trial on two drugs used for the treatment of
diarrhea in calves.  Colostrum deprived calves are given a standard dose of an infectious organism
(strain B44 E.coli) at two days of age and then therapy is instituted as soon as the calves begin to
show diarrhea.  The following data were obtained from the trial

Died Lived

Drug (1) 7 2

Drug (2) 3 5

Since,

P (y1 |y. , 1 ) !

9
y1

8
10"y1

17
10

we have

y1 0 1 2 3 4 5 6 7 8 9

P(y1!y.,1) 0 0 .0018 .0345 .1814 .363 .302 .104 .013 .0004

Hence the P-value of Fisher's exact test is 
P = 0 + .0004 + .013 + .0345 + .0018 + .104 % .15
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and therefore, no significant association between treatment and mortality can be justified by the
data.

From the properties of the hypergeometric distribution, if E(y1 ! y.,1) and Var (y1 ! y.,1)
denote the mean and variance of (3.6), then

and

As an approximation to the tail area required to test H0: $=1 we refer

to the table of standard normal distribution.

From the above example y1=7, E(y1!y.,1) = 5.29, and Var (y1!y.,1)=1.03.  Hence z=1.19,
p%.12 indicating no significant association.

B. INTERVAL ESTIMATION

To construct an approximate confidence interval on , it is assumed that when n is large,!#
then  follows a normal distribution with mean 0 and variance .  An approximate( ψ̂ " ψ ) Var ( ψ̂ )
(1-") 100% confidence interval is

To avoid asymmetry, Woolf (1955) proposed constructing confidence limits on &=ln$ .  He
showed that

and the lower and upper confidence limits on # are given respectively by



ψ̂L ! ψ̂ exp "Zα/2 Var( β̂ )

ψ̂U ! ψ̂ exp #Zα/2 Var ( β̂ )

C.  ANALYSIS OF SEVERAL 2x2 CONTINGENCY TABLES

Consider k pairs of mutually independent binomial variates yi1 and yi2 with corresponding
parameters pi1 and pi2 and sample sizes ni1 and ni2, where i=1,2,...k.  This information has a k 2x2
table representation as follows.

       Disease

D TotalD̄

Exposure
E yi1 ni1-yi1 ni1

yi2 ni2-yi2 ni2Ē

Total yi. ni-yi. ni

There is a considerable literature on the estimation and significance testing of odds ratios
in several 2x2 tables (Thomas and Gart, 1977; Fleiss, 1979; Gart and Thomas, 1982).  The main
focus of such studies was to address the following questions:

(i) Does the odds ratio vary considerably from one table to another?

(ii) If no significant variation among the k odds ratios is established, is the common odds ratio
statistically significant?

iii) If no significant variation among the k odds ratios is established, how can we construct
confidence intervals on the common odds ratio after pooling information from all tables?

Before addressing these questions, the circumstances under which several 2x2 tables are
produced will now be explored in more detail.  One very important consideration is the effect of
confounding variables.  In a situation where a variable is correlated with both the disease and the
exposure factor, 'confounding' is said to occur.  Failure to adjust for this effect would bias the
estimated odds ratio as a measure of association between the disease and exposure variables.

If we assume for simplicity, that the confounding variable has several distinct levels, then
one way to control for its confounding effect is to construct a 2x2 table for the disease and
exposure variable, at each level of the confounder.  This procedure is known to epidemiologists
as "stratification".  Example 3.2 illustrates this idea.
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Example 3.2

The following data (Table 3.4) are from a case-control study on enzootic pneumonia in pigs by
Willeberg, (1980).  Under investigation is the effect of ventilation systems where exposure (E)
denotes those farms with fans.  

Table 3.4
Classification of Diseased and Exposed Pigs in Enzootic Pneumonia Study 

(Willeberg, 1980).

Disease

D D̄

(Fan)       E 91 73 164

(No Fan)   25 60 TotalĒ

     Total 116 133 249

and 95% confidence limits are:

A factor which is not taken into account in analyzing the data as a whole is the size of the
farms involved in the study.  In attempting to filter out the effect of farm size (if it is present) on
the disease,  two groups are formed, large and small farms.  By stratifying this possible 
confounder into large and small farms, the table that  results ( Table 3.5 )  produces the odds ratios
found in Table 3.6.  These subgroup analyses are aimed at evaluating the association between the
disease and the risk factor (ventilation) at this level.  Now it is evident that the relationship
between the disease and the exposure factor is not clear; and this could be due to the possible
confounding effect of farm size.
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Table 3.5
Stratification of Farm Sizes

Disease

Fan D D̄

Farm Size
Large E 61 17

6 5Ē

Small E 30 56

19 55Ē

Table 3.6
Odds Ratios and Confidence Intervals After Stratification by Farm Size

Size ψ̂ i β̂ i SE ( β̂ i ) C.I. on ψ

large 2.99 1.095 0.665 (.67, 13.2)

small 1.55 0.438 0.349 (.74, 3.26)

For farms of large size, the estimated odds ratio of disease-risk association is  which isψ̂ ! 2.99
identical to the estimate obtained from Table 3.4.  However, it is not statistically significant
(p%.10, two-sided).  It follows then that pooling the data from large and small farms to form a
single 2x2 table can produce misleading results.  Therefore the subgroup-specific odds ratio may
be regarded as descriptive of the effects.  Now, in the context of multiple tables, the three
questions posed previously will be addressed.

1. Test of Homogeneity

This is a reformulation of the question "Does the odds ratio vary considerably across
tables?"  which tests the hypothesis H0: $1=$2...$k=$.  Woolf (1955) proposed a test that is
based on the estimated log odds ratios ( ) and their estimated variances.β̂ i

Since the estimated variance of ( ) isβ̂ i

an estimate of ln $ is constructed as
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(3.13)

Furthermore, it can be shown that 

To assess the homogeneity (i.e. constancy of odds ratios) the statistic

has approximately a chi-square distribution with k-1 degrees of freedom.  Large values of !w
2 is

an evidence against the homogeneity hypothesis.

Example 3.3 

This example applies Woolf's Method to the summary estimates from Table 3.6 to test for a
difference between the odds ratios of the two groups.  The chi-square value is calculated as
follows:

From the value of the !2 we can see that there is no significant difference between the odds
ratios of the two groups.
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Remark (test for interaction):

If we intend to find a summary odds ratio from several 2x2 tables, it is useful to test for
interaction.  Consider the summary calculations in Table 3.6.  The odds ratios for the two strata
are 2.99 and 1.55.  If the underlying odds ratios for individual strata are really different, it is
questionable if a summary estimate is appropriate.  In support of this, the implication of a
significant value of !2

w  should be stressed.  A large value of !2
w  indicates that the homogeneity

of #i's is not supported by the data and that there is an interaction between the exposure and the
stratification variable.  Thus, in the case of a significant value of !2

w  one should not construct a
single estimate of the common odds ratio.

2. Significance Test of Common Odds Ratio

Recall that inference on the odds ratio can be based on the total y. conditional on the
marginal total of the 2x2 table.  From Cox and Snell (1989), the inference on the common odds
ratio $ is based on the conditional distribution of 

given the marginal total of all tables.

Now, we know that under H0:#=1 the distribution of y.i (the total of diseased in the ith

table) for a particular i is given by the hypergeometric distribution (3.6) and the required
distributions of T is the convolution of k of these distributions.  It is clear that this is impracticable
for exact calculation of confidence limits.  However, we can test the null hypothesis that $=1 by
noting from (3.7) and (3.8) that the mean and variance of T are given respectively as:

where y.i is the observed total number of diseased in the ith table.  A normal approximation, with
continuity correction, for the distribution of T will nearly always be adequate.  Cox and Snell
(1989) indicated that the approximation is good even for a single table and will be improved by
convolution.  The combined test of significance from several 2x2 contingency tables is done by
referring



χ2
1 !

!T"E(T!ψ!1)!" 1
2

2

Var(T!ψ!1)

(3.14)

χ2
mh !

!
k

i!1

yi1(ni2"yi2)"yi2(ni1"yi1)

ni

2

!
k

i!1

ni1ni2y.i(ni"y.i)

n 2
i (ni"1)

(3.15)

ψ̂mh !

!
k

i!1

yi1(ni2"yi2)

(ni1#ni2)

!
k

i!1

(ni1"yi1)yi2
(ni1#ni2)

. (3.16)

to the chi-square table with one degree of freedom.

Another form of the one-degree of freedom chi-square test on H0:#=1 was given by
Mantel and Haenszel (1959) as

where, ni=ni1+ni2, y.i=yi1+yi2.

In Example 3.4 we consider the data in Table 3.5 and calculate both Cox and Snell, and
Mantel and Haenszel formulations.

Example 3.4

As a test of significance of the common odds ratio using the data in Table 3.5, we have T=91,
E(T!$=1)=85.057, and Var(T!$=1)=10.3181.  Hence !1

2=2.872, and the combined odds ratio
is non-significant.

Using Mantel and Haenszel's !2
mh formula we got !2

mh=2.882 which is quite similar to the value
obtained using the Cox and Snell method with similar conclusions.

3. Confidence Interval on the Common Odds Ratio

Mantel and Haenszel (1959) suggested a highly efficient estimate of the common odds ratio
from several 2x2 tables as:
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Note that   can be regarded as a special form of weighted means, based on theβ̂mh ! ln ψ̂mh
linearizing approximation near &mh=0.

This equivalence has been used to motivate various estimates of the variance of .!&mh
Robins et al.(1986) found that an estimated variance is

where
Ai = (yi1 + ni2 - yi2) / (ni1 + ni2)
Bi = (yi2 + ni1 - yi1) / (ni1 + ni2)
Ci = yi1 (ni2 - yi2) / (ni1 + ni2)  
Di = yi2 (ni1 - yi1) / (ni1 + ni2)  

and
C. = ' Ci , D. = ' Di

Using the results from the previous example (Example 3.4), we find that  and that theψ̂mh ! 1.76
95% confidence limits for  are (0.96, 3.24).ψ̂mh

Hauck (1979) derived another estimator of the large sample variance of   asψ̂mh

where



IV.  ANALYSIS OF MATCHED PAIRS (ONE CASE AND ONE CONTROL)

The matching of one or more control to each case means that the two are paired based on
their similarities with respect to some characteristic(s).  Pairing individuals can involve attributes
such as age, weight, farm covariates, parity, hospital of admission and breed.  These are just a few
examples.

It is important to note that since cases and controls are believed to be similar on the
matching variables, their differences with respect to disease may be attributed to different
extraneous variables.  It was pointed out by Schlesselman (1982; page 105) that "if the cases and
controls differ with respect to some exposure variable, suggesting an association with the study
disease, then this association cannot be explained in terms of case-control differences on the
matching variables".  The main objective of matching is in removing the bias that may affect the
comparison between the cases and controls.  In other words, matching attempts to achieve
comparability on the important potential confounding variables (a confounder is an extraneous
variable that is associated with the risk factor and the disease of interest).  This strategy of
matching is different from what is called "adjusting", in that adjusting attempts to correct for
differences in the cases and controls during the data analysis step, as opposed to matching, which
occurs at the design stage.

In this section we investigate the situation where one case is matched with a single control,
where the risk factor is dichotomous.  As before we denote the presence or absence of exposure
to the risk factor by E and  respectively.  In this situation responses are summarized by a 2x2Ē
table which exhibits two important features.  First, all probabilities or associations may show a
symmetric pattern about the main diagonal of the table.  Second, the marginal distributions may
differ in some systematic way.

Subsections A and B will address the estimation of the odds ratio and testing the equality of the
marginal distributions under the matched case-control situation.

A.  ESTIMATING THE ODDS RATIO

Suppose that one has matched a single control to each case, and that the exposure under study is
dichotomous.  Denoting the presence or absence of exposure by E and  respectively there areĒ
four possible outcomes for each case-control pair.

To calculate #mh for matched pair data, in which each pair is treated as a stratum, we must
first change the matched pair table to its unpaired equivalent resulting in four possible outcomes
(Tables 3.7, 3.8, 3.9, and 3.9a).



Table 3.7

outcome (1) unpaired equivalent

control

E case controlĒ

case
E 1 0 E 1 (y1) 1 (n1-y1)

0 0 Ē 0 (y2) 0 (n2-y2)Ē

n=2

y1(n2-y2) = 0, and y2(n1-y1) = 0

Table 3.8

outcome (2) unpaired equivalent

control

E case controlĒ

case
E 0 0 E 0 1

1 0 1 0Ē Ē

y1(n2-y2) = 0, and y2(n1-y1) = 1

Table 3.9

outcome (3) unpaired equivalent

control

E case controlĒ

case
E 0 1 E 1 0

0 0 0 1Ē Ē

y1(n2-y2) = 1, and y2(n1-y1) = 0
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Table 3.9a

outcome (4) unpaired equivalent

control

E case controlĒ

case
E 0 0 E 0 0

0 1 1 1Ē Ē

y1(n2-y2) = y2(n1-y1) = 0

Since,

and ni=2, then,

If the matched pairs table was,

control

case
f g

h i

then the odds ratio estimate would be   = g/h.ψ̂mhp

It was shown (see Fleiss, 1981) that the variance of the odds ratio estimate is
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To test the hypothesis H0:$mhp=1, the statistic

has an asymptotically chi-square distribution with one degree of freedom.  A better approximation
includes a correction factor, such that the statistic becomes:

The implication of a large value of this !2 is that the cases and the controls differ with regards to
the risk factor.

B.  TESTING THE EQUALITY OF MARGINAL DISTRIBUTIONS

Suppose that the 2x2 table is summarized as

Control

E Ē

Case
E p11 p12 p1.

Ē p21 p22 p2.

p.1 p.2

When p1.=p.1, then p2.=p.2, subsequently there is marginal homogeneity.  From the above table,
if   , then marginal homogeneity is equivalent to symmetry of probabilities(p1."p.1 ) ! (p2."p.2 )
off the main diagonal, that is, p12=p21.  Naturally, a test of marginal homogeneity should be based
on

From Agresti (1990) (page 348), it can be shown that

Note that the dependence in the sample marginal probabilities resulting from the matching of cases
and controls, is reflected in the term 2(p11p22-p12p21).  Moreover, dependent samples usually show



D ± Zα/2

ˆVar(D)

ˆVar(D) !
1
n

p̂1.(1"p̂1.) # p̂.1(1"p̂.1)"2(p̂11p̂22"p̂12p̂21)

Z !
D

ˆvar(D)

ˆVar(D!H0) !
g#h

n 2

Z0 !
g"h

(g#h)1/2 (3.20)

H0:ψ ! 1 , (3.21)

positive association between responses, that is

$=p11p22 / p12p21 > 1   or   p11p22-p12p21 > 0. 

From (3.19) this positive association implies that the variance of D is smaller than when the
samples are independent.  This indicates that matched studies which produce dependent
proportions can help improve the precision of the test statistic D.

For large samples, D= p̂1.-p̂.1 = (g-h)/n  has approximately a normal sampling distribution.  
An (1-") 100% confidence interval on p1.-p.1 is

where

The statistic

is a test on the hypothesis H0:p1.=p.1.

Under H0 it can be shown that the estimated variance is,

The statistic simplifies to

the square of Z0 gives the one-degree of freedom chi-square test on 

this being McNemar's test, an example of which is given below.



ψ̂ !
20
5

! 4

SE(ψ̂) !
20
5

(20#5)
(20)(5)

1/2

! 2

χ2
(1) !

(!20"5!"1)2

25
! 7.84

Example 3.5

To illustrate McNemar's test the following hypothetical data from a controlled trial with matched
pairs is used.  The null hypothesis being tested is H0:$mhp=1.

Control

E Ē

Case
E 15 20

5 85Ē

Based on the calculated value of the !2, there is no reason to accept the null hypothesis which
means that there is a significant difference (p<0.05) in the rate of exposure among the cases and
the controls.

V.  STATISTICAL ANALYSIS OF CLUSTERED BINARY DATA

In the analysis of binary data we are always reminded that, for the statistical inference on
the proportion or the odds ratios to be valid, the individual responses must be independent from
each other.  For example in a randomized controlled trial, individuals are assigned to the treatment
and control groups at random.  Moreover, within each group (treatment and control) the response
collected from an individual is assumed to be independent of the responses of other individuals in
the same group as well as the other groups.  There are situations, however, where randomization
of individuals into groups may not be feasible.  Studies carried out by community health
researchers, teratologists, and epidemiologists often use clusters of individuals as units of
randomization.  A main feature of cluster randomization studies is that inferences are often
intended to apply at the individual level, while randomization is at the cluster level.

We would like to point out that what is meant by the term cluster depends on the nature
of the study.  For example, repeated measurements of individuals over time, as in longitudinal



Var(yi) ! !
j

Var(yij)#! !
l&j

Cov(yij,yil)

! nipi (1"pi )#ni (ni"1)pi (1"pi )ρ

studies that include n independent individuals, is a form of randomization by cluster.  Here each
individual is a cluster and the number of over-time measurements is the cluster size.

Another example arising from veterinary epidemiology is where investigators want to test
if current bacterial infection in the cow's udder affects the invasion by other pathogenic bacteria.
Each cow is treated as a cluster with the four quarters (teats) as the cluster size.  In genetic
epidemiology where the concern is with the possibility that a certain disease is genetically
controlled, nuclear families or sibships are the clusters that constitute the sampling frame.

Although different in their specific objectives and their significance to the scientific
community, the above examples share an important characteristic.  That is, responses of
individuals within a cluster cannot be regarded as statistically independent and tend to exhibit
intracluster correlation.  This means that measurements on individuals within a cluster tend to be
more alike than measurements collected from individuals in different clusters.  Standard methods
of analysis for binary data tend to be inadequate when used with clustered data; in particular,
variances of the estimated parameters are under-estimated and statistical tests do not maintain their
nominal error rates.  In this section we present the methodologies available to account for the
effect of cluster sampling on the chi-square statistic when it is used to test the homogeneity of
several proportions in nested randomized experiments.  Other applications such as estimating the
variance of the estimated common odds ratio and the Mantel-Haenszel chi-square test for
independence in a series of 2x2 tables are also presented.  Before we discuss the methods, it is
worthwhile to clarify the nature of interdependence within a cluster.

Let ni be the size of the ith cluster i=1,2,...k and yij be the response of the jth individual in
the ith cluster.  Since yij is binary, we assume that P[yij=1] = pi for all j=1,2,...ni, and that the
correlation ( between any pair yij, yil has the same value for any i and j&'.  In other words all
individuals within the cluster are equally correlated.  The parameter ( is a measure of intraclass
correlation (Crowder, 1978), first formally suggested by Landis and Koch (1977) as the common
correlation.  Under the common correlation model we have:

Pr (yij = yi' = 1) = pi
2 + (pi(1-pi)

Pr (yij = yi' = 0) = (1-pi)
2 + (pi(1-pi)

Pr (yij = 1, yi' = 0) = Pr (yij = 0, yi' = 1) = pi(1-pi)(1-()

If    is the total number of diseased individuals in the ith cluster, thenyi !!
j

yij



! nipi (1"pi ) [ 1# (ni"1)ρ ]

yij ! !
nij

l!1
yij'

χ2 ! !
I

i!1

ni(p̂i"p̂)2

[p̂(1"p̂)]
(3.22)

p̂i !
yi
ni

The variance of yi under the assumption of independence is nipi(1-pi).

In the absence of independence the variance is inflated by the factor [1+(ni-1)(] which is denoted
by )i.  Therefore, for (>0, ignoring the cluster effect would result in underestimating the
variance of yi.

A. TESTING HOMOGENEITY

In this section, our chief objective is to make inferences about the unknown overall
proportions of affected individuals in conceptual groups denoted by pi (i=1...I), where I is the
number of groups (treatments).  Within each of these groups (treatment), we randomize ki clusters.
Let yij be the number of positive responses (affected, diseases, etc.) among the nij units in the jth

cluster (j=1,2,...ki) within the ith treatment (i=1,2,...I).

Note that under this setup

where yij' = 1 if 'th individual in jth cluster receiving ith treatment is affected
" 0 else

and the association between yijl and yijl´ is measured by the common intraclass correlation (.

From Fleiss (1981), the homogeneity hypothesis is given by H0: p1=p2=...=pI.  Under
H0 the statistic

has asymptotic distribution of !2 with I-1 degrees of freedom (when used without accounting for
the clustering effect) where 
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ki
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.

To illustrate the use of the statistic (3.22) in a special case where the responses are assumed
to be independent we shall assess the data of Whitmore (reported in Elston (1977)).   In this study,
12 strains of mice were treated with a carcinogen and the numbers with and without tumours were
noted.  The results are as found in Table 3.10.

Table 3.10
Number of Tumours Observed in Rats Treated with Carcinogens

Strain 1 2 3 4 5 6 7 8 9 10 11 12
No. with tumours 26 27 35 18 33 11 11 13 13 5 5 2

No. without tumours 1 3 14 9 20 11 11 15 22 19 30 24

We would like to test the null hypothesis of no difference among the strains with respect to the
incidence of tumours. 

 Direct computations give ,  and  .  The critical value ofp̂ !
199
378

! 0.526 χ2 ! 103.85

chi-square with 11 degrees of freedom at "-level of 0.05 is 19.67.  Thus, we would conclude,
based on the data, that the strains differ significantly.  

In the presence of within-cluster correlation, !2 given by (3.22) no longer provides a valid
test on H0 but may be adjusted to account for such correlation.  Of the several methods which can
be used to correct the !2 statistic, two will be presented here.
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i
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1.  Donner's Adjustment

Donner (1989) suggested weighting the !2 statistic by a factor Di = 1+(ci-1)(, where (
is the intraclass correlation, assumed common across groups, with

His suggested adjusted chi-square statistic is

where  and  is the analysis of variance estimator of  given by:D̂ i!1# (ci"1) ρ̂ ρ̂ ρ

where 
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and

Donner proposed that the asymptotic distribution of !D
2  is chi-square with I-1 degrees of freedom.
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Returning again to the rat tumour data (Table 3.10), recall that there was clearly a highly
significant strain effect.  This may be due to the fact that the between strain variation is much
larger than the within strain variation.  In other words, this could indicate the presence of high
correlation between binary responses within the strain.   Thus, one could question the validity of
the chi-square statistic used (3.22).  To detect departure from the assumption of independence,
Tarone (1979) constructed a one-degree of freedom chi-square test on the null hypothesis that the
data are independently binomially distributed versus a correlated binomial alternative.  His test
statistic is given by

Since   the binomial hypothesis is rejected.p̂ ! 0.526, N!378, ! n 2
i ! 13022 and χ2

T!315.11
Hence the statistic (3.22) must be adjusted to account for the effect of within strain correlation.  

To illustrate Donner’s adjustment on the rat tumour data, we used the SAS program given
below to produce the MSW, MSB and no ,which in turn are used to calculate the .   Looking at theρ̂
SAS output derived from this program, the (highlighted) values for the MSW, MSB and no are 2.35,
0.187 and 31.23 respectively.  Therefore,  is equal to 0.27 and   is equal to 11.33, which is noρ̂ χ2

D
longer significant.  

data  donner;
input strain tumour count;
cards;
1 1   26
1 0     1
2 1    27
2 0      3
3 1    35
3 0    14
….
12 1    2 
12 0  24
;
proc freq;
tables strain*tumour/chisq;
weight count;
run;

proc glm;
class strain;
freq count;
model tumour = strain;
random strain;
run;



p̂i !
y i

n i
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y i ! !
ki

j!1
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ki

, and

OUTPUT: 

                                General Linear Models Procedure
                                    Class Level Information

                       Class           Levels    Values
                        STRAIN       12        1 2 3 4 5 6 7 8 9 10 11 12
                        Number of observations in data set = 378

Dependent Variable: TUMOUR
Frequency:          COUNT

Source                      DF           Sum of Squares         Mean Square   F Value     Pr > F
Model                       11              25.89374083            2.35397644     12.61        0.0001
Error                       366              68.34170890            0.18672598
Corrected Total      377              94.23544974

                  R-Square                     C.V.                Root MSE          TUMOUR Mean
                  0.274777                 82.08071              0.43211802           0.52645503

General Linear Models Procedure

Source      Type III Expected Mean Square

STRAIN      Var(Error) + 31.232 Var(STRAIN)

2.  Rao and Scott's Adjustment

Recently Rao and Scott (1992) proposed a more robust procedure to account for the
intracluster dependence, which assumes no specific model for the intracluster correlation as required
by Donner's adjustment.  Their suggested procedure is based on the concepts of "design effect" and
effective sample size widely used in sample surveys (Kish, 1965, p.259).  Their approach is
summarized as follows:  Since  may be written as the ratio of two sample meansp̂ i ! yi /ni
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we have a variance of the , asp̂ i

for large ki.  Moreover, since

is the variance of   under the binomial assumptions, thenp̂ i

represents the inflation factor due to clustering and is known in sample surveys as the 'design effect'.
The ratio   is called the effective sample size.ñ i!ni /di

Transforming the aggregate data ( yi, ni ) to ( ), i=1,2,...I where  and, treating ỹ i , ñ i ỹ i!yi /di ỹ i
as binomial random variable with parameters ( ), the adjusted χ.

2 statistic isñ i , p̃ i

where

Under H0,  is asymptotically distributed as a χ2 variable with I-1 degrees of freedom, unlike χ2χ̃2

given in (3.22).
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Example 3.6  "Hypothetical Drug Trial"

The data are the result of a drug trial aimed at comparing the effect of 4 antibiotics against
"Shipping Fever" in calves.  Calves arrive in trucks at the feedlot and are checked upon arrival
for signs of the disease.  Animals that are confirmed as cases (from the same truck) are
randomized as a group to one of the 4 treatment regimes.

The following table (Table 3.11) gives the number of treated animals within a 2 week period and
the number of deaths at the end of the 2 weeks.

Table 3.11
A Hypothetical Drug Trial to Compare the Effect of
Four Antibiotics Against Shipping Fever in Calves

Treatment

1 (a) 30 25 25 32 12 10 10

(b) 3 0 4 10 0 0 1

2 (a) 30 30 15 15 20 19

(b) 1 1 1 1 4 0

3 (a) 30 35 30 10 25

(b) 5 7 9 1 2

4 (a) 40 10 25 20 19 25

(b) 10 1 1 2 1 2

(a) = number treated (b) = mortality

We would like to test the hypothesis that the mortality rates are the same for all treatments.
Let pi  be the mortality rate of the ith treatment.  Hence the null hypothesis would be   H0: p1 =
p2 = .... = pI .
Since,

where,  n1=144,  n2=129,  n3 =130, n4 =139  and   p̂ (1" p̂ ) ! 0.1236(0.8764) ! 0.1083,



χ2 ! 0.002606#4.520#4.47#0.00217 ! 8.995

then the uncorrected !2 is given by:

Comparing this to a   value of 7.81, the null hypothesis is rejected at a p level of 0.029. χ2
3

This implies that there is a significant difference in the proportions of dead animals for the four
different antibiotics.

To estimate the intracluster correlation, the ANOVA results obtained from SAS are summarized
in the following table:

Treatment SSB (df) SSW (df) Mi

1
2
3
4

1.915
.504
.763
.974

6
5
4
5

13.835
7.00

18.807
13.947

137
123
125
133

144
129
130
139

MSB = 0.208 and MSW = .103,  n0 = 21.934 and thus (̂ = 0.044.

Since c1 = 24.43, c2 = 23.34, c3 = 28.85, c4 = 26.708, then,
D1 = 2.023, D2 = 1.98, D3 = 2.22, D4 = 2.13 .

To facilitate the computations, we summarize the results as follows:

Treatment Di niP̂ i
ni(p̂i"p)2

Di p(1"p)

1
2
3
4

2.023
1.98
2.22
2.13

0.13
0.06
0.18
0.12

144
129
130
139

   0.0013
2.28

  2.008
  0.001

Hence !D
2 = 4.29, which indicates that there is no significant difference between the mortality

rates.

Rao and Scott's Method:

The computations are summarized as follows:



Drug 1: P̂1 !
18
144

! 0.125

cluster y1j n1j (y1j"n1j P̂1 )2

1
2
3
4
5
6
7

3
0
4
10
0
0
1

30
25
25
32
12
10
10

  0.563
  9.766
  0.766
36.00
 2.25

  1.563
  0.063

Total 18 144 50.96

*1 = 0.003, d1 = 3.775,
ỹ1 = 4.768, ñ1 = 38.141

Drug 2: P̂2 !
8

129
! 0.062

cluster y2j n3j (y2j"n2j P̂2 )2

1
2
3
4
5
6

1
1
1
1
4
0

30
30
15
15
20
19

0.74
0.74

  0.005
  0.005
  7.616
  1.388

Total 8 129 10.495

*2 = 0.0008, d2 = 1.678,
ỹ2 = 4.767, ñ2 = 76.863

Drug 3: P̂3 !
24
130

! 0.184

cluster y3j n3j (y3j"n3j P̂3 )2

1
2
3
4
5

5
7
9
1
2

30
35
30
10
25

0.27
0.31
12.11

   0.716
  6.76 

Total 24 130 20.17

*3 = 0.0015, d3 = 1.285,
ỹ3 = 18.676, ñ3 = 101.161



χ2
RS !

.6601
0.129(1".129)

! 5.883,

Drug 4: P̂4 !
17
139

! 0.122

cluster y4j n4j (y4j"n4j P̂4 )2

1
2
3
4
5
6

10
1
1
2
1
2

40
10
25
20
19
25

26.09 
0.05

 4.234
 0.198
 1.752
 1.118

Total 17 139 33.442

*4 = 0.0021, d4 = 2.69,
ỹ4 = 6.32, ñ4 = 51.68

Hence,

which again does not exceed the  value of 7.81, so we have no reason to reject the nullχ2
3,0.05

hypothesis. This implies that there is no significant difference between the mortality rates.

From this example we can see the importance of accounting for intracluster correlations as the
resulting conclusion about the equality of the proportions is different when the correlation is taken
into account.

B.  INFERENCE ON THE COMMON ODDS RATIO

Consider a series of 2x2 tables wherein the notation has been changed to accommodate
multiple tables, groups and clusters.  Explicitly, nijt is the size of the tth cluster in the jth group (j=1
for exposed and j=2 for unexposed) from the ith table, and kij is the number of cluster in the jth

group from the ith table.  To further clarify this altered notation, Table 3.12 describes  the data
layout for the ith stratum.

This can be reduced to the 2x2 format as shown in Table 3.13.
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Table 3.12

Stratum (i) cluster (t)
1 2 3 ...... kij

Exposed cluster ni11 ni12 ni13 ni1kij
j=1 size

number yi11 yi12 yi13 yi1kij
of deaths

Unexposed cluster ni21 ni22 ni23 ni2kij
j=2 size

number yi21 yi22 yi23 yi2kij
of deaths

Table 3.13

D+ D-

j=1 E+ yi1 yi1-ni1 ni1

j=2 E- yi2 yi2-ni2 ni2

where  ,    and      ( j=1,2 ;  i=1,2,...k).yij !!
kij

t!1
yijt nij !!

kij

t!1
nijt

Now, because the sampling units are clusters of individuals the !mh
2  statistic used to test

H0:#=1 would not be appropriate.  To adjust this statistic for the clustering effect we introduce
two procedures, one proposed by Donald and Donner (1987), and the other by Rao and Scott
(1992).

1.  Donald and Donner's Adjustment

Because we have 2k rows in Table 3.12, an intraclass correlation, (, is first estimated from
each row.  Let (̂ij be the estimate of (ij, from the jth row in the ith table.  Under a common
correlation model, it is reasonable to construct an overall estimate of ( as

Let     be the correction factor for each cluster, and let Bij be theD̂ijt ! 1# (nijt"1) ρ̂A
weighted average of such correction factors, where the weights are the cluster sizes themselves.
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Hence

Donald and Donner (1987) suggested that the Mantel Haenszel test statistic on H0:#=1,
adjusted for the clustering effect is given by

Since cluster sampling affects the variance of the estimated parameters, the variance  ofV̂mh
#̂mh is no longer valid.  Donald  and Donner defined the cluster variant  of the  contained inb̂

$

i b̂ i
Hauck's formula (3.18)

The corrected variance,   , is:V̂mhc

Hence an (1-") 100% confidence limits on #̂mh after adjusting for clustering is
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2. Rao and Scott's Adjustment

This adjustment requires the computation of the variance inflation factors dij using the
cluster-level data (yijt, nijt), where t=1,2,...kij .  The inflation factor is computed in two steps.
First,

where

and then,

An asymptotically (as kij ) * for each i and j) valid test of H0:#=1 is obtained by replacing
(yij, nij) by (ỹij,ñij), where ỹij = yij/dij and ,ñij = nij/dij.

To construct an asymptotic confidence interval on #̂mh, RS suggested replacing (yij,nij) by (ỹij,ñij)
in #̂mh to get

as the clustered adjusted point-estimator of #mh.  Similarly Hauck's variance estimator for #̃mh

becomes
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where,

Example 3.7

The following data are the result of a case-control study to investigate the association between
Bovine-Leukemia-virus (BLV) infection and Bovine-Immunodeficiency virus (BIV) infection
(Table 3.14).  Each BLV+ cow as matched on sex and age (within two years) with a BLV- cow
from a different herd.  The Pedigree relatives of a BLV+ cow constituted clusters of BIV+ or BIV-

while the pedigree relatives of a BLV- cow constituted clusters of BIV+ or BIV-.

A region-stratified (unmatched) analysis is conducted to test the above hypothesis using,

(a) the Mantel-Haenszel one-degree-of-freedom chi-square test on the significance of the
common odds ratio and a 95% confidence interval using Hauck's variance formula and,

(b) adjusting the above chi-square test and the variance expression for clustering using Donald
and Donner's procedure and Rao and Scott's procedure.



ψ̂MH !

(18)(48)
96

#
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42
(4)(26)

96
#
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42

! 8.89

Table 3.14

Case-Control Study Results for Investigation of Association Between Bovine-Leukemia-Virus Infection and
Bovine-Immunodeficiency Infection 

Region 1 Region 2

BLV+ COWS CONTROLS BLV+ COWS CONTROLS

BIV+  BIV¯ BIV+ BIV¯ BIV+ BIV¯ BIV+ BIV¯

1 4 0 4 7 1 0 2

1 5 0 4 6 1 0 0

1 2 0 3 0 0 1 6

2 4 0 2 1 1 0 6

0 1 0 4 0 3 0 2

2 0 0 7 0 1 1 0

1 1 0 3 1 1 1 0

1 2 1 1

2 1 2 5

3 0 0 3

1 1 1 2

2 4 0 6

1 1 0 4

From Table 3.14 we construct the following 2 (2x2) tables

Region 1 Region 2

BIV+ BIV¯ BIV+ BIV¯

BLV+ 18 26 15 8

BLV¯ 4 48 3 16

The MH common odds ratio is given by:

and Hauck's variance is 17.85.
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Now, the 1 degree of freedom chi squared test of the common odds ratio will be shown using three
methods:

# uncorrected 
# Donald and Donner's adjustment
# Rao and Scott's adjustment. 

Uncorrected Chi Squared Test of Common Odds Ratio:

H0: no association between BIV and BLV status in pedigree.

Using (3.14) we have

Thus, since 24.863 exceeds the !2
(1,0.05) value of 3.84, the null hypothesis is rejected implying that

there is a strong association between BIV and BLV status.

Donald and Donner's Adjustment

H0.: no association between BIV and BLV status in pedigree.
(Here the chi square is adjusted by an inflation factor, Di.)

The !2
MHC for Donald and Donner is,

The estimated common intraclass correlation is given by:
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Now, the correction factor for each cluster is 

and the weighted average of the correction factors is 

So,
B11 = Region 1 BLV- = 1.870026 B12 = Region 1 BLV+ = 1.768454
B21 = Region 2 BLV- = 1.952450 B22 = Region 2 BLV+ = 2.047695

and the !2
MHC equation using Donald and Donner's adjustment is,

Because 13.33 is larger than the !2
(1,0.05) value of 3.84 the null hypothesis is rejected implying that

when we adjust for the intracluster correlation, there is a significant association between the BLV
and the BIV status.

The value of the variance is now,

where, 
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and 

The results of these computations show that, ŵ1!1.085, ŵ2!0.572, b̂1
$
!0.673, b̂2

$
!1.165

and that the variance is thus equal to 33.791.

Rao and Scott's Adjustment

H0: no association between BIV and BLV status.
Here the chi square is adjusted by the variance inflation factor, dij   First, we compute the *ij,

where,     The inflation factor dij is calculated usingp̂ij !
yij
nij

.

which is then used to adjust yij and nij, as suggested by Rao and Scott: 

Here, d11=0.93, d12=1.32, d21=2.16, and d22=1.17.  Calculation of the adjusted chi square, 
, is as follows,χ2

mhc
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! 29.851 .

Therefore, once again we reject the null hypothesis which means that there is a significant
association between the BLV and the BIV status.

With the Rao and Scott adjustment, the variance estimate is now

          An extensive literature has been developed on the methodologic issues which arise when
the risk of disease is compared across treatment groups, when the sampling units are clusters of
individuals.  The presence of so-called ‘cluster effects’ invalidates the standard Pearson’s chi-
square test of homogeneity, and makes the reported confidence interval on the common odds ratio
unrealistically narrow.   In the previous section we introduced the most commonly used techniques
of adjusting clustering effects.  It is debatable as to which technique is most appropriate.  

Extensive simulation studies conducted by Ahn and Maryon (1995) , and Donner et al.
(1994) showed that each approach has its advantages.  Ahn and Maryon  preferred Rao and Scott’s
adjustment on the length of the confidence interval of the Mantel-Haenszel common odds ratio.
The reason was that the ANOVA estimator of the intraclass correlation  , which is needed forρ
Donner’s adjustment, is positively biased, and hence the confidence interval would be spuriously
wide when .  On the other hand, Donner’s et al.  simulations showed that the adjustment toρ ! 0
Pearson’s chi-square test of homogeneity based on the pooled estimate of the intraclass correlations
performs better than methods which separately estimate design effects from each group.  The
reason was that under randomization, the assumption of common population design effect is more
likely to hold, at least under the null hypothesis.  They also stressed the need for more research
in this area, to investigate the finite-sample properties of methods which do not require the
assumption of a common design effect.  

VI.  MEASURE OF INTERCLINICIAN AGREEMENT FOR CATEGORICAL DATA

Efficient delivery of health care requires proficient and error free assessment of clinical
measures taken by physicians, for they serve as the basis for prognostic and therapeutic
evaluations.  Therefore, researchers have become increasingly aware of the need for reliable
measurements of prognostic variables.  This means that measurements made during medical
evaluation should be as consistent as possible whether recorded by the same clinician on the same
patient or by different clinicians performing the same evaluation.  Consequently, reliability studies
should be conducted in clinical investigations to assess the level of clinician variability in the
measurement procedures to be used in medical records.  When data arising from such studies are
quantitative, tests for interclinician bias and measures of interclinician agreement are obtained



from standard ANOVA mixed models or random effects models where the intraclass correlation
is the reliability statistic commonly used, as we have shown in Chapter 2.

On the other hand, much of the medical data are categorical whereby the response variable
is classified into nominal (or ordinal) multinominal categories.  For this type of data the kappa
coefficient is the measure of agreement statistic and is analogous to the intraclass correlation.

The main objective of this section is to discuss measures of agreement for categorical data.
First we introduce the very simple situation of two clinicians classifying n patients into two
categories.  In this case we discuss two probabilistic models, the first assumes that the two raters
are unbiased relative to each other and the second assumes the existence of bias.  This is followed
by the situation where multiple raters (clinicians) are assigned to each of n patients.
Generalization to multiple categories will be discussed at the end of this section.

A.  AGREEMENT IN 2X2 TABLES (TWO CLINICIANS AND TWO CATEGORIES)

Most of the early statistical research dealing with analyzing observer or rater agreement
has focused on the development of summary measures of agreement.  The aim was to develop a
statistic that indicated the extent of agreement between two raters.  Cohen's kappa was, and still
is , the most popular of these types of measures.  The value of kappa can fall between 0 and 1,
with values near 0 indicating agreement no better than would be expected by chance, and a value
of exactly 1 indicating perfect agreement.  To clarify this concept let us consider the following
example as a prelude to the construction of the kappa coefficient.

Example 3.8

Consider Table 3.15,  which shows the examination results of 20 x-rays of the spinal cords of
young horses who showed neurological signs of Cervical Vertebral Malformation (CVM).  Each
of two clinicians categorize the x-ray as yes (which means that the spinal cord is damaged) or no
(not damaged).
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Table 3.15
CVM Classification Results

X-Ray Clinician (1) Clinician (2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Yes
No
No
No
Yes
No
Yes
No
No 
Yes
No
No
Yes
Yes
Yes
No
No
No
Yes
No

Yes 
No 
Yes 
No 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
No
No 
Yes
No
Yes
No
No
Yes
Yes
No

The observations in Table 3.15 can be summarized by a simple two-way contingency table as
follows:

clinician (1)

Yes No
Total

clinician (2)
Yes 7 (a) 4 (b) 11

No 1 (c) 8 (d) 9

Total 8 12       20 = n

Note that the simple matching or proportion of agreement is given by

which in general is given by:
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Jaccard argued that (see Dunn and Everitt, 1982) if the clinicians are diagnosing a rare
condition, the fact that they agree on the absence of the condition (the count "d") should provide
no information.  He then suggested

as a better measure of agreement.

A new dimension to this is provided by realizing that except in the extreme circumstances
when b=0 or c=0, some degree of agreement is to be expected by chance.  This may happen if
clinician 1 uses a set of criteria for evaluating each patient that is entirely different from the set
of criteria used by clinician 2.  Different opinions have been expressed on the need to incorporate
agreement due to chance while assessing the interclinician reliability.  The natural approach to
correct for chance agreement is to consider a coefficient that assumes the value 1 when there is
complete agreement (that is the maximum agreement is 1).  Let p0 be the observed agreement as
defined above and pe the amount of chance agreement.

Cohen's kappa (1960) is the ratio of pe subtracted from p0, divided by pe subtracted from the
maximum agreement (1).  Algebraically, this is:

It should be emphasized that estimating kappa by using any of the probabilistic models
described in this section involves the following assumptions:

i) the patients, slides or specimens to be evaluated are collected independently
ii) patients are blindly assigned to clinicians, that is to say that neither clinician is aware of

the result of the other clinician's assessment
iii) the rating categories are mutually exclusive and exhaustive

1.  PROBABILISTIC MODELS

Suppose the same two clinicians each evaluate a sample of n patients blindly
(independently) with ratings denoted as either yes (1) or no (0).  An underlying model proposed
by Bahadur (1961) and used by Shoukri et al. (1995) to investigate the properties of estimated
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kappa is described as follows:  let xm and ym denote the rating for the mth patient assigned by
clinician 1 and clinician 2 respectively.  Let +ij (i,j = 0,1) denote the probability that xm=i and
ym=j.  Furthermore, let p1=+11++10 denote the probability of a positive ("yes") evaluation by
rater 1 and p2=+11++01 denote the probability of a positive evaluation by rater 2; q1=1-p1 and
q2=1-p2.  The following table shows the cell and marginal probabilities of the cross classification.

x (Clinician 1)

1 0

y (Clinician 2)
1 +11 +01 p2

0 +10 +00 q2

p1 q1

Since +11 = Pr[xm=1, ym=1]=E(xy), and E(xy) = E(x)E(y) + ((p1q1p2q2)
1/2, then

+11 = p1p2+,   +10 = p1q2-,

+01 = p2q1-, +00 = q1q2+,

where, , = ((p1q1p2q2)
1/2

Since the percentage of agreement is Po = +11++00 = p1p2+q1q2+2, , and the percentage of
agreement on the basis of chance alone is   Pe = p1p2+q1q2 , then substituting in

we get

and hence   ,= -(p1q2+p2q1)/2 .

Note that when the two clinicians are unbiased relative to each other (i.e. p1=p2) the kappa
coefficient is ( (the intraclass coefficient between the two ratings), for if p1=p2=p, then ,=(pq,
Po=p2+q2+2(pq and Pe=p2+q2.    Then, Po-Pe=2(pq, 1-Pe=2pq and hence -=(.

Moreover, when rater's bias is present, a perfect association (i.e. (=1) does not imply
complete agreement.
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The maximum likelihood estimator (MLE) is obtained by maximizing the log-likelihood
function L with respect to p1, p2, and -.  Shoukri et al. (1995) showed that the log-likelihood
function is given by

where

and

The MLE's p̂1, p̂2, -̂ of p1, p2 and - are    andp̂1 ! x̄, p̂2 ! ȳ,

For the case of no rater bias (ie. p1=p2=p), the MLE's are given as
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κ̂ ± Zα/2
var(κ̂) . (3.28)

where

It is also worthwhile to note that when p1=p2, ̂- is algebraically equivalent to Scott's (1955) index
of agreement, and to the usual estimate of ( obtained by applying a one-way analysis of variance
to the binary ratings.

B.  CONFIDENCE INTERVAL ON KAPPA IN 2X2 TABLE

To obtain a large sample confidence interval on - from a 2x2 table we need an expression
for its asymptotic variance.  The large sample variance of -̂ is given by

where
A = (p1p2+,)[1-(p1+p2)(1--)]2+(q1q2+,)[1-(q1+q2)(1--)]2

B = (1--)2[(p1+q2)
2(p2q1-,)+(p2+q1)

2(p1q2-,)]
C = [--Pe(1--)]2

This is algebraically equivalent to the variance of -̂ derived by Fleiss et al. (1969).
Assuming ̂- is normally distributed with mean - and variance var(-̂), the (1-") 100% asymptotic
confidence interval on - is thus given by

Shoukri et al. (1995) investigated the adequacy of the above approximation through a
Monte-Carlo simulation study.  They concluded that the approximation is good for samples of at
least 50 individuals.

For the case of no rater bias (p1=p2), construction of approximate confidence intervals on
- has been investigated by Bloch and Kraemer (1989) and Donner and Eliasziw (1992).

Bloch and Kraemer showed that the large sample variance of -̂* (the maximum likelihood
of kappa when p1=p2) is
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Assuming !̂* is normally distributed with mean ! and variance var(!̂*), the resulting (1-") 100%
limits are given by

Bloch and Kraemer also suggested that a variance stabilizing transformation for ̂!* should improve
the accuracy for confidence interval estimation, which for p#½ is described as:

where,
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If p=½, then . Since  is approximately normal with mean Z(κ) andZ ( κ̂$ )!arcsin ( κ̂$ ) Z ( κ̂$ )
variance 1/n, an (1-α) 100% confidence limit on the transformed scale is obtained using

An inverse transformation on these limits yields an approximate (1-α) 100% confidence
interval on κ.

Remarks

(1) Under the assumption of no rater bias, that is that each clinician may be characterized by the
same underlying success rate p, the estimator  is quite appropriate if the chief objectiveκ̂$
of the study is to evaluate the reliability of the measurement process itself rather than
detecting potential bias between the clinicians.

(2) It seems appropriate then that a test for clinician bias should precede estimating kappa.  This
is achieved by using McNemar's test for the comparison of the marginal probabilities p1 and
p2 and is given by

where, n10 is the count in the cell (x=1, y=0), and n01 is the count in the cell (x=0, y=1).  For
large samples and under the assumption of marginal homogeneity (no rater bias) the statistic
(3.32) is approximately distributed as a chi-square with one degree of freedom.  Large values
of this statistic are evidence against H0:p1=p2.

(3) If H0:p1=p2 is justified by the data, then we recommend constructing confidence limits on
kappa from (3.31), and kappa itself should be estimated by  or   .  If there is no evidenceκ̂$ κ̂
in the data to support the null hypothesis, then kappa is estimated by  in (3.25) and theκ̂
confidence limits are given by (3.28).

(4) As an answer to the question; "What is good agreement", Landis and Koch (1977) have given
six categories that can be used as a benchmark for determining the closeness of the
comparisons.

kappa 0.00 .01-.20 .21-.40 .41-.60 .61-.8 .81-1.00

strength of
agreement

poor slight fair moderate substantial almost perfect



0.658 ± 1.96 .0056

0.511 < κ < 0.805 .

0.427 < Z(κ̂) < 0.810 .

0.498 < κ < 0.795 .

Example 3.9

Cervical Vertebral Malformation (CVM) is a commonly diagnosed cause of progressive spinal
cord disease in young horses (foals).  Neurological signs due to spinal cord compression result
from morphologic changes involving the cervical vertebral and surrounding structures.  A
quantitative score based on radiograph diagnosis was used to predict CVM in foals predisposed
to development signs of spinal cord disease.  A cumulative score of 12 or more is considered a
positive diagnosis (=1), otherwise is negative (=0).  The results of diagnoses performed by two
clinicians are given below.

Clinician X

1 0

Clinician Y 1 32 7

0 10 56

Even though the McNemar's chi-square statistic supports the hypothesis of marginal homogeneity
(P1=P2), for illustrative purposes we shall construct confidence limits on kappa using (3.28) and
(3.31).

Since P0=0.838, and Pe=0.526, then  =0.658.  It can be shown that ,  C =0.29,κ̂ τ̂ ! 0.16
B=0.019, A=0.344.  Hence from (3.27), Var( )=0.0056, and a 95% confidence interval onκ̂
kappa is

or

To use Bloch and Kraemer's expression, we find  =0.386,  .=24.141,  -0=0.084,P̂
v(-0)=1.009,  Cu=1.091.  Hence

Using the inverse transformation on each side we have
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C.  AGREEMENT BETWEEN TWO RATERS WITH MULTIPLE CATEGORIES

A more general situation than has been discussed previously is that of two clinicians being
asked to classify n patients into one of m categories.  Examples of multiple categories could be
levels of severity of a particular condition (slight, moderate, severe), or the classification of tumor
sizes from the x-rays of n cancer patients into small, medium, large, and metastasized.

Under the same conditions of independence, blinded assignment and mutual exclusiveness of the
categories, the results may be summarized as per the format of Table 3.16.

Table 3.16
Classification by Two Clinicians Into m Categories

Clinician (2)

c1 c2 cj cm Total

c1 n11 n12 n1j n1m n1.

Clinician (1) c2 n21 n22 n2j n2m n2.

ci ni1 ni2 nij nim ni.

cm nm1 nm2 nmj nmm nm.

Total n.1 n.2 n.j n.m n

Here, nij is the number of patients assigned to category i by Clinician 1 and to category j by Clinician 2.

From the definition of Cohen's kappa,

the observed proportion of agreement is

and the chance expected proportion of agreement is

Fleiss, Cohen, and Everitt (1969) showed that the asymptotic variance of  is estimated by,κ̂
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where

An approximate (1-!) 100% confidence interval for " is

1.  Weighted Kappa

In certain studies some disagreements between the two raters may be considered more
critical than others.  Therefore, it may be sensible to assign weights to reflect the seriousness of
the disagreements between the clinicians.  Cohen (1968) suggested using a weighted kappa by
assigning weights to the observed agreement and the chance expected agreement.  Accordingly the
observed agreement is

and the chance expected agreement is

where wij are the chosen weights.  The weighted kappa ("w) is calculated using equation (3.33) on
replacing Po and Pe with Pow and Pew respectively.  That is
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The weights are defined so as to satisfy the following conditions:
(a) wij=1 when i=j
(b) 0<wij<1 for i&j, and
(c) wij=wji.

Fleiss and Cohen (1973) suggested defining the weights as:

Another set of weights suggested by Ciccetti and Allison (1971) are

Note that if wij=0 for all i&j, then the weighted kappa reduces to Cohen's unweighted kappa.

Remarks

Let

be the mean of the ratings over the n patients for the first and second clinician respectively,

are the corresponding sum of squares, and

would be the sum of the cross products of the two sets of ratings.

Since with Fleiss and Cohen's weights (3.26), -w can be written
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and, since

then,

and

Hence, the final expression for the weighted kappa is,

The expression (3.37) was first given by Kreppendorff (1970) and can be found in Schouten (1985,
1986).  Note also that it is the concordance correlation that was given by Lin (1989) as a measure
of agreement between two sets of continuous measurements (see Chapter 2).

The large sample variance of weighted kappa with arbitrary weights satisfying conditions
(a),(b), and (c) was derived by Fleiss, Cohen, and  Everitt (1969) and confirmed by Cicchetti and
Fleiss (1977), Landis and Koch (1977).  This is given as

where
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An approximate (1-") 100% confidence interval on kappa is 

Example 3.10

The following data are extracted from the VMIMS (Veterinary Medical Information and
Management System).  Two clinicians were asked to classify 200 dogs into 4 categories of
dehydration:

0 " normal
1 <5% dehydration
2 5%-10% dehydration
3 above 10%

The classification was based on subjective physical evaluation.

Clinician (2)

0 1 2 3 Total

0 119 10 2 0 131

Clinician (1) 1 7 28 1 0 36

2 2 13 14 2 31

3 0 0 1 1 2

Total 128 51 18 3 200

First we construct 95% confidence limits on unweighted kappa.  Since P0=.81, Pe=.479, then
=0.635  Var( )=0.00235. Hence the 95% confidence limits are  0.54 < - < 0.73. κ̂ κ̂

Using  wij=1-(i-j)2 / (m-1)2 , =0.781 Var( )=0.0017 , hence 0.70 <  < .86 with 95%κ̂w κ̂w κ̂w
confidence.  On using wij=1-!i-j! / m-1  we get  =0.707, Var( )=0.00178, and the 95%κ̂w κ̂w
confidence limits are, .62 < -w < .79



A SAS program which produces the above results is as follows,

data kappa;
input clin1 clin2 count;
cards;
0     0     119
0     1       10
0     2         2
0     3         0
1     0         7 
1     1       28
…
3      0        0  
3      1        0
3      2        1
3      3        1
;
proc freq;
weight count;
tables clin1*clin2 / agree;
run;

SAS OUTPUT FROM ABOVE PROGRAM:

                             STATISTICS FOR TABLE OF CLIN1 BY CLIN2
                                       Kappa Coefficients
                     Statistic Value ASE 95% Confidence Bounds
                    
                     Simple Kappa 0.635 0.048 0.541    0.730
                     Weighted Kappa 0.707 0.042 0.624    0.790

                     Sample Size = 200

D.  MORE THAN TWO CLINICIANS

The generalization of Cohen's kappa to the case of more than two clinicians has been
considered by Landis and Koch (1977).  In this section we distinguish between two situations; the
first is when the set of clinicians classify the patients on a binary scale and the second situation is
when the set of clinicians classify the patients into one of several mutually exclusive categories.
In both situations the proposed index of agreement will be derived along the lines of work done
by Davies and Fleiss (1982).



1.  Case I: Two Categories and Multiple Raters

a. Test for Interclinician Bias

Let us consider the following example.

Example 3.11

As part of the problem based learning approach, senior undergraduate students at the Ontario
Veterinary College were asked to identify (from x-rays) foals with Cervical Vertebral
Malformation (CVM). Four students took part in the exercise, and were asked to independently
classify each of 20 x-rays as affected ("1") or not ("0"). The data are given in Table 3.17.

Table 3.17  
Independent Assessments of 20 X-Rays by 4 Students For Identification of CVM in Foals.

Student (clinician)

X-Ray A B C D Total

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
0
1
1
1
1

0
0
1
1
1
0
0
0
1
0
1
1
1
0
0
0
1
0
1
1

0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
1
0
1
1

0
0
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1

0
1
4
4
3
0
1
0
4
3
4
3
2
2
1
1
4
1
4
4

proportion
Total

0.75
15

0.50
10

0.55
11

0.50
10

46

As can be seen, the 4 students clearly differ in their probability of classifying the presence of
CVM using the x-rays.  Before we construct an index of agreement it is of interest to test whether
their differences are statistically significant, that is, testing the equality of the marginal
proportions.



QA !

k(k"1) !
k

j!1
y.j "

y..

k

2

ky.. " !
n

i!1
y 2
i.

.

The appropriate procedure to test for marginal homogeneity of binary data is to use Cochran's
QA statistic.  This is derived using the layout of Table 3.18 and defining yij, as the assessment of the
ith patient by the jth clinician (i=1,2,...n, j=1,2,...k), where yij=1 if the ith patient is judged by the jth

clinician as a case and as 0 otherwise.

Table 3.18
Classification of Outcomes for Multiple Clinicians and Multiple Patients

Clinician

Patient 1 2 ........ k Total

1
2
.
.
.
i
.
.
.
n

y11

y21

yi1

yn1

y12

y22

yi2

yn2

y1k

y2k

yik

ynk

y1.

y2.

yi.

yn.

Total y.1 y.2 y.k y..

Let yi. be the total number of clinicians who judge the ith patient as a case, and let y.j be the total
number of patients the jth clinician judges to be cases.  Finally, let y.. be the total number of
patients classified (judged) as cases. 

Cochran's QA statistic is then given by:

Under the null hypothesis of marginal homogeneity, QA is approximately distributed as
chi-square with k-1 degrees of freedom.

Remarks

(i) In the case of two clinicians (i.e. k=2) Cochran's QA test is equivalent to McNemar's test
which tests for marginal homogeneity as discussed in section B.

(ii) For computational purposes, QA has the simpler expression:



QA ! k(k"1)
!
k

j!1
y 2

.j "
y 2

..

k

ky.. " !
n

i!1
y 2
i.

(3.39)

r1 !
MSB"MSW

MSB#(k"1)MSW
,

For the CVM assessments given in Table 3.17, QA=6.375 with 3 degrees of freedom,
which would lead us to accept the hypothesis that the 4 student clinicians have similar
classification probabilities, at "=.05.

b.  Reliability Kappa

In this section we will be concerned with estimating kappa as a measure of reliability.  This
is achieved by the analysis of variance (ANOVA) procedure for the estimation of reliability
coefficients.  The ANOVA will be carried out just as if the results were continuous measurements
(see Chapter 2) rather than binary ratings.

If the test on the hypothesis of no interclinician bias based on QA is justified by the data,
then the one-way ANOVA mean squares can provide an estimate of reliability using the
expression,

where MSB is the between patients mean square, MSW is the within patients mean square, and
k is the number of assessments per patient.

A simple one-way ANOVA is performed on the data in example 3.12 with the following SAS
program; an summary of the output is given in Table 3.19.  

SAS program:

data xrays;
input xray student $ score @@;
1 a 0 1 b 0 1 c 0 1 d 0 
2 a 0 2 b 0 2 c 1 2 d 0 
3 a 1 3 b 1 3 c 1 3 d 1
...
18 a 1 18 b 0 18 c 0 18 d 0
19 a 1 19 b 1 19 c 1 19 d 1    
20 a 1 20 b 1 20 c 1 20 d 1 
;



r1 !
0.608".133

.608#3(.133)
! 0.472

proc glm;
class xray;
model score=xray;
run;

Table 3.19

The Results of the One-Way ANOVA for the Data in Table 3.17

Source df Sum of square Means square

X-ray 19 11.550 0.608

Error 60 8.000 0.133

This value indicates a good reliability score.

If one were not prepared to assume lack of interclinician bias, then we would have two
possible models to consider:  (i)  two-way random effects ANOVA or (ii) a two-way mixed model.

(i) For the two-way random effects ANOVA, the appropriate intraclass correlation was
derived by Bartko (1966) and is given in Chapter 2 (equation 2.5).  Using the data of Table
3.17, the results of applying the two-way ANOVA using a SAS program as described
below, are found in Table 3.20.

SAS PROGRAM:

/** two way random effects ANOVA **/

proc glm data=xrays;
class xray clinicn;
model score=xray clinicn;
run;



r2 !
σ̂2
g

σ̂2
g#σ̂

2
c#σ̂

2
e

! 0.475

σ̂2
c !

CMS"MSW
n

! 0.008

r3 !
n(PMS"MSW)

n(PMS)#(k"1)CMS#(n"1)(k"1)MSW
,

     Table 3.20  
The Result of the Two-Way ANOVA For the Data in Table 3.16.

Source df Sum of squares Mean square

X-ray (Patient) 19 11.55 .608 (PMS)

Clinician 3 0.85 .283 (CMS)

Error 57 7.15 .125 (MSW)

Now, the estimate of the coefficient of agreement, r2, is calculated by:

where

σ̂2
g !

PMS"MSW
k

! .1206

and σ̂2
e ! .125 .

Note that /̂g
2 is the variance component estimate of the patient’s effect, ̂/c

2 is the variance
component estimate of the clinician's effect, and /̂e

2 is estimated error variance. These
estimates are valid only under the additive model,

yij = patient's effect + clinician's effect + error (3.40)

which assumes no patient-clinician interactions and that the k clinicians involved in the
study are a random sample from a larger pool of clinicians.

(ii) The two-way mixed effects ANOVA, assumes that the assessment scores have the same
representation (3.40) except that the clinician's effect is fixed.  From Fleiss (1986), the
agreement coefficient is r3 where



κc !
Po"Pe

1"Pe

. (3.41)

which when applied to the data in Table 3.16 is equal to 0.479.

2. Case II. Multiple Categories and Multiple Raters

Suppose that each of n patients is classified into one of c mutually exclusive and exhaustive
categories by each of the same k clinicians; let the vector yij = (yij1, yij2, ... yijc) represent the
classification scores of the ith patient by the jth clinician (i=1,2,...n, j=1,2,...k).  Hence,

 1 if ith patient is classified by jth clinician as falling into the
yijm = " mth category; m=1,2,...c

0 else

clearly  for all (i,j)!
c

m!1
yijm!1

Let    yim = number of clinicians who assign the ith patient to the mth category, so,

yim ! !
k

j!1
yijm

Note that;

yi ! !
c

m!1
yim

! !
c

m!1
!
k

j!1
yijm

! !
k

j!1
!
c

m!1
yijm ! k

Since we have multiple categories we denote Cohen's kappa by -c, where



!
c

m!1

yim
2

,

!
n

i!1
!
c

m!1

yim
2

. (3.42)

!
n

i!1

k
2 ! n k

2 . (3.43)

Po !

!
n

i!1
!
c

m!1

yim
2

n
k
2

!
1

n k(k"1) !
n

i!1
!
c

m!1
yim (yim"1)

Po !
1

n k(k"1) !
n

i!1
!
c

m!1
y 2
im " nk (3.44)

Po, which is the observed proportion of agreement, is equal to:

Total number of pairs of classification that are in agreement   .
Total number of possible pairs of  classification

Since the number of pairs of classifications that are in agreement for the ith patient is:

then the total number of pairs of classifications that are in agreement is

For each patient there are   possible pairs of classifications, and the total number ofk
2

possible pairs of classifications is thus:

Hence,

and finally



pjm !
yjm
n

!
c

m!1
pjm plm

Pe !
1

k(k"1) !
j!1

!
l!1

j&l

!
c

m!1
pjm plm (3.45)

(iii) If we let yjm ! !
m

i!1
yijm

denote the total number of patients assigned to the mth category by the jth clinician, then

is the observed proportion of patients assigned to the mth category by the jth clinician.

If the assignments by clinicians are statistically independent, then the probability that any
two raters (j and l) will agree in their classification of a randomly selected patient is

and the average chance-expected probability of pairwise agreement is then

Substituting 3.44 and 3.45 in 3.41 we get an estimate of -c. 

Example 3.12 "CVM Data"

Four clinicians are asked to classify 20 x-rays to detect spinal cord damage in young foals
believed to have Cervical Vertebral Malformation (CVM). The results are given in Table 3.21.

Classification is based on scores where:

1-5 = N (slight or no damage)
6-11 = I (intermediate damage)
>12 = S (severe damage)



Table 3.21  

CVM Classification by 4 Clinicians

Clinician

X-ray 1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

S
I
N
N
S
N
N
N
S
S
I
I
S
N
I
I
S
S
I
N

I
I
N
N
S
N
N
N
S
S
I
S
I
I
I
N
S
I
S
N

S
S
I
N
S
N
I
N
I
S
S
S
I
I
N
N
S
S
S
I

I
I
N
N
I
I
N
N
S
S
I
S
I
N
N
I
S
S
S
N

The estimation of -c proceeds along the following steps:

First we construct the table of yim  (Table 3.22) from which Po is calculated.



Po !
1

(20)(4)(3)
216"(20)(4) ! 0.567

Table 3.22
The Number of Clinicians Who Assign the ith X-Ray to the mth Category (yim).

X-ray S I N !
i
!
m

y 2
i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2
1

3

3
4
1
3
1

4
3
3

2
3
1

1
1
1

1

3
1
3
2
2
2

1
1
1

3
4

3
3
4

2
2
2

3

8
10
10
16
10
10
10
16
10
16
10
10
10
8
8
8
16
10
10
10

Total 28 26 26 216

Next, we collapse the information into the form found in Table 3.23a, from which the cell
probabilities (Table 3.23b) and Pe are calculated.

Table 3.23a 
Total Number of Patients Assigned to the mth Category by the jth Clinician (yjm).

Clinician
Category

Total yi

S I N
1 7 6 7 20
2 6 7 7 20
3 9 6 5 20
4 6 7 7 20

Total 28 26 26 80



Pe !
1
12

[! p1m p2m#! p1m p3m#! p1m p4m

# ! p2m p1m#! p2m p3m#! p2m p4m

# ! p3m p1m#! p3m p2m#! p3m p4m

# ! p4m p1m#! p4m p2m#! p4m p3m]

! .3298

κc !
0.567"0.3298

1"0.3298
! 0.35

Table 3.23b

pjm !
yjm
n

Clinician
Category

S I N

1 7
20

(p11)
6
20

(p12)
7
20

(p13)

2 6
20

(p21)
7
20

(p22)
7
20

(p23)

3 9
20

(p31)
6
20

(p32)
5
20

(p33)

4 6
20

(p41)
7
20

(p42)
7
20

(p43)

The last step is to calculate Pe from Table 3.23b.

where all the sums are from m=1 to m=4.
Hence,



χ2
(m) ! !

k

j!1

n
p̄m(1"p̄m)

(pjm"p̄m)2

p̄m ! !
k

j!1

yjm
kn

.

According to Landis and Koch's (1977) benchmark, this is indicative of a fair agreement among
the clinicians.

E.  ASSESSMENT OF BIAS

The assessment of interclinician bias cannot be achieved in a straightforward manner using
Cochran's QA statistic as in the case of two categories.  In the multiple categories situation we
assess bias for each category separately.  This is done using the chi-square statistic to test the
marginal homogeneity of the k clinicians.

For the mth category we evaluate the statistic

where

Under the null hypothesis of no interclinician bias !(m)
2  has, for large k, a chi-square

distribution with k-1 degrees of freedom.  In the above example, the statistics !2(S), !2(I), !2(N)
are 1.319, 0.228, and 0.68 respectively.  This shows that the four clinicians are not biased relative
to each other in their classification of the 20 x-rays.

VII.  STATISTICAL ANALYSIS OF MEDICAL SCREENING TESTS

A. INTRODUCTION

Medical screening programmes are frequently used to provide estimates of prevalence
where prevalence is defined as the number of diseased individuals at a specified point in time
divided by the number of individuals exposed to risk at that point in time.  Estimates of disease
prevalence are important in assessing disease impact, in delivery of health care, and in the
measurement of attributable risk.  Since screening tests are less than perfect, estimated prevalence
must be adjusted for sensitivity and specificity which are standard measures used in evaluating the
performance of such tests.  Before we examine the effect of sensitivity and specificity on the
estimate of prevalence it should be recognized that the experimental error associated with the study
design needed to evaluate the screening test must be as small as possible.  One way to achieve this
goal is by providing a precise definition of the condition which the test is intended to detect.  This
is often a difficult thing to do for the following reasons.  First, the presence or absence of a



disease is usually not an all or none phenomenon.  For a wide range of conditions, there is a
gradual transition from healthy to diseased, and thus any "dividing line" between these two states
is often somewhat arbitrary.  The second reason which is of interest to most biometricians is that
repeated examinations also result in experimental errors which are due to the non-zero probability
of not selecting the same cases.  

This section gives a somewhat detailed treatment of the statistical problems related to
medical screening tests.  We shall focus on the situation where we have only two outcomes for the
diagnostic tests, disease (D) and no-disease ( ).  Situations in which the test has more than twoD̄
outcomes or where the results of the test are measured by a continuous variable will not be
considered here.

B. ESTIMATING PREVALENCE

The purpose of a screening test is to determine whether a person belongs to the class (D)
of people who have a specific disease.  The test result indicating that a person is a member of this
class will be denoted by T, and   for those who are non-members.T̄

The sensitivity of the test is   which describes the probability that a person withη ! P (T |D )
the disease is correctly diagnosed; the specificity of the test is   which is theθ ! P ( T̄ |D̄ )
probability of a disease free person being correctly diagnosed.

Let "=P(D) denote the prevalence of the disease in the population tested.  The results of a
screening test can be summarized in terms of #, $, and " as in the following table (Table 3.24):
  

Table 3.24  Layout of the Results of a Screening Test.

Test result

T T̄

Disease
Status

D $" "(1-$) "

(1-#)(1-") #(1-") 1-"D̄

p 1-p

If we let P(T)=p, denote the apparent prevalence then from the above table we have

p = $"+(1-#)(1-") (3.46)
and 1-p = "(1-$)+#(1-").

In mass screening programs the prevalence " needs to be estimated.  If a random sample
of n individuals are tested, we estimate p by the proportion (p̂) of those who are classified in T.



π̂ !
p̂"(1"θ)
η#θ"1

(3.47)

var(π̂) !
p(1"p)

n(η#θ"1)2
. (3.48)

π̂2 !
p̂#θ̂"1

η̂#θ̂"1
(3.49)

π̂2 ! π#(p̂"p)
!π̂2

!p
#(η̂"η)

!π̂2

!η
#(θ̂"θ)

!π̂2

!θ

#
1
2!

(p̂"p)2
!2π̂2

!p 2
#(η̂"η)2

!2π̂2

!η2
#(θ̂"θ)2

!2π̂2

!θ2
# terms with zero expectations #...

E(π̂2"π) !
η(1"η)π

n1(η#θ"1)2
"
θ(1"θ)(1"π )

n2(η#θ"1)2 (3.50)

Solving equation (3.46) for " we get the estimate of prevalence given by Rogan and Gladen (1978)
as

It should be realized that the expression (3.47) may yield an estimate that does not fall
between 0 and 1.  For example if p is less than (1-#) then " is negative.  To remedy this problem,
one can define a truncated version of "̂ so that

"̂ = 0 when "̂<0
 "̂ = 1 when "̂>1 .

When # and $ are known, "̂ is an unbiased estimate with variance

If $ and # are not known but instead are estimated from independent experiments that involved
n1 and n2 individuals respectively, then " is estimated by

Rogan and Gladen showed that "̂2 is biased and its variance is larger than (3.48).  To evaluate the
bias and variance of "̂2, they employed an asymptotic Taylor's series expansion as:

Since ̂p, ̂$, and  are unbiased with   and    it can be easily seenE(η̂"η)2!
η(1"η)
n1

, E(θ̂"θ)2 !
θ(1"θ)
n2

,
that



Var(π̂2) !
p(1"p)

n(η#θ"1)2
#
η(1"η)(p#θ"1)2

n1(η#θ"1)4
#
θ(1"θ)(η"p)2

n2(η#θ"1)4
.

Var(π̂2) !
p(1"p)

n(η#θ"1)2
#

η(1"η)π2

n1(η#θ"1)2
#
θ(1"θ)(1"π)2

n2(η#θ"1)2 (3.51)

C !
P(D " T)

P(T)
!
ηπ
p

.

Ĉ !
π̂η
p̂

!
η

η#θ"1
1" 1"θ

p̂
(3.52)

Var(Ĉ) !
η(1"θ)
η#θ"1

2 (1"p)

np 3
. (3.53)

Ĉ1 !
η̂

η̂#θ̂"1
1" 1"θ̂

p̂
. (3.54)

and

Since   and   ,  thenp#θ"1 ! (η#θ"1)π η"p ! (1"π)(η#θ"1)

The asymptotic bias (3.50) and variance (3.51) are correct to the first order of approximation.

C. ESTIMATING PREDICTIVE VALUE POSITIVE AND PREDICTIVE VALUE
NEGATIVE

An important measure of performance of a screening test, in addition to $ and #, is the
predictive value of a positive test, C=(PV+), or P(D "T).  From Table (3.24) we have

When $ and # are known, we replace  by its estimate (3.47) to get an estimate, , for P(D"T).π̂ Ĉ

The asymptotic variance of  in this case isĈ

When $ and # are not known, but are estimated by and  based on samples of sizes n1η̂ θ̂
and n2 where the screening test is used on persons whose disease status is known, we replace $
and # by these estimated values such that an estimate of C is given by

Gastwirth (1987) showed that as n, n1, and n2 increase, 1 # N(C, Var( 1 )) whereĈ Ĉ



Var(Ĉ1) !
η(1"θ)

p(η#θ"1)

2 p(1"p)

np 2
#

π(1"θ)
p(η#θ"1)

2 η(1"η)
n1

#
η(1"π)

p(η#θ"1)

2 θ(1"θ)
n2

(3.55)

F ! P(D"T) !
π(1"η)

1"p
(3.56)

F̂ !
π̂(1"η̂)

π̂(1"η̂)#θ̂(1"π̂)

!
1"η̂
1"p̂

p̂#θ̂"1

η̂#θ̂"1
.

(3.57)

Var(F̂) !
(1"η)2θ2

(η#θ"1)2(1"p)4

p(1"p)
n

#
θ2π2

(1"p)2(η#θ"1)2

η(1"η)
n1

#
(1"η)2(1"π)2

(1"p)2(η#θ"1)2

θ(1"θ)
n2

(3.58)

From (3.55) it can be seen that in the case when $ and # are near 1, but the prevalence " is low,
that the third term can be the dominant term.  Moreover, both the first and third terms increase
as " decreases which means that using the test on groups that have low prevalence will often yield
a low value of Ĉ1 with a large variance.

Another quantity which is of much importance, as described by Gastwirth (1987), is the predictive
value negative,

which is estimated by

Gastwirth (1987) showed that for large samples,  has a normal distribution with mean F andF̂
variance given by:

Gastwirth recommended against the use of (3.58) for developing confidence intervals unless n, n1,
and n2 are large enough to ensure that the normal approximation holds.  This is important
particularly in situations where $, #, and " are near their boundaries.



L(nij) ! (ηπ)n11 (π(1"η))
n10 ((1"θ)(1"π))n01 (θ(1"π))n00 .

D. ESTIMATION IN DOUBLE SAMPLING

In the previous section we estimated the prevalence using a screening test when the true
status of an individual is unknown.  If however the true disease status of an individual can be
determined by a test or device where it is not subject to misclassification, then we have what is
traditionally known as the "gold standard".

In most practical situations though, the screening test (ST) is a relatively inexpensive
procedure having less than perfect sensitivity and specificity, thus the ST tend to misclassify
individuals.  Using only the ST on all the n individuals results in a biased estimate of "; this bias
is given by (3.50).  Because the use of a gold standard may be very costly due to the requirement
for n1 and n2 additional individuals, the estimation of $ and # by this means may not be easily
obtained.

To compromise between the two extremes, a double sampling scheme (DSS) was proposed
by Tenenbein (1970).  This DSS requires that:

(i) a random sample of n individuals is drawn from the target population
(ii) a subsample of n1 units is drawn from n and each of these n1 units is classified by both the

ST and the gold standard 
(iii) the remaining n-n1 individuals are classified only by the ST.  Let x denote the number of

individuals whose ST classification is diseased and let y denote the number of individuals
whose ST classification is not disease.

Using Tenenbein's notation, the resulting data can be presented as follows:

ST

S S̄

Gold Standard
D n11 n10 n1.

n01 n00 n0.D̄

n.1 n.0 n1

X Y n-n1

The likelihood function of nij (n11, n10, n01, n00)
$ is proportional to 

Conditional on nij, x has binomial distribution Bin (p, n-n1) and the likelihood of the experiment
is proportional to



L ! L(nij) Bin (p,n"n1)

% (ηπ)n11 (π(1"η))n10 ((1"θ)(1"π))n01

(θ(1"π))n00 p x(1"p)y

(3.59)

C !
ηπ
p

, F !
π(1"η)

1"p
,

1"C !
(1"θ)(1"π)

p

1"F !
θ(1"π)

1"p
.

L α C
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Since

then from (3.46)

and

Writing (3.59) in terms of C,F, and P we get 

Differentiating the logarithm of L with respect to C,F, and P and equating to zero, we get their
maximum likelihood estimates (MLE) as

therefore, the MLE of ", $ and # are given respectively as
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Note that x+y+n1=n.

The variance-covariance matrix of the MLE's is obtained by inverting Fisher's information matrix
whose diagonal elements are given by

and where,

Since
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Since
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then

Finally;

As n1 and n increase, then
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To find the variance of "̂, we note that

Using the delta method, we have to the first order of approximation

where the partial derivatives are evaluated at the true values of the parameters.  Hence

Using the following identities by Tenenbein (1970) 

and

we have
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For two dichotomous random variables whose joint distribution is given as in Table 3.24,
the intraclass correlation is given by

Since

then

Tenenbein (1970) defined the coefficient of reliability K=%2 as a measure of the strength between
the ST and the gold standard.  From 3.60 we get:

It turns out that the asymptotic variance of "̂ is the weighted average of the variance of a binomial
estimate of " based on n1 measurements from the gold standard and the variance of a binomial
estimate of " based on n measurements from the gold standard.  One should also note that:

(i) when %=0, that is when the ST is useless, then the precision of "̂ depends entirely on the
n1 measurements from the gold standard

(ii) where %=1, that is when the ST is as good as the gold standard, the precision of "̂ depends
on the n measurements from the gold standard.  This is because in using n measurements
from the ST we get the same precision as a binomial estimate of " based on n
measurements from the gold standard.
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Example 3.13

Mastitis is a frequently occurring disease in dairy cows.  In most cases it is caused by bacteria.
To treat a cow it is quite important to identify the specific bacteria causing the infection.  Bacterial
culture is the gold standard, but it is a time consuming and expensive procedure.  A new test of
interest, pro-Staph ELISA procedure, is cheap and easily identifies the S.aureus bacteria.

Milk samples were taken from 160 cows.  Each sample was split into two halves, one half
was tested by bacterial culture and the other half was tested by the ELISA.  Further milk samples
taken from 240 cows were evaluated by the ELISA test.  The data obtained are found in Table
3.25.

Table 3.25
Test Outcomes For Bacterial Identification Using

ELISA and a ‘NEW TEST’.

NEW TEST

1 0 Total

ELISA
1 23 13 36

0 18 106 124

Total 41 119 160

62 178 240

Here n11 = 23, n10 = 13, n01 = 18, n00 = 106, x = 62, y = 178.  The sample sizes are n1 = 160,
and n = 400.
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(1".224) #
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! 0.00085#.000095 ! 0.00095

f(π " true positive) & f1(π) !
πa1"1

(1"π)b1"1
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A 95% confidence interval on " is (0.166, 0.286).  These results indicate that the true
prevalence lies between 17 and 29%.

VIII.  DEPENDENT SCREENING TESTS (MULTIPLE READINGS)

The standard definitions of sensitivity and specificity imply that all true positives have the
same probability of a positive test result, and similarly that all true negatives have the same
probability of a negative test result.  It is realistic to expect that, within each of the two groups -
true positives and true negatives, the probability of a positive test result may vary from person to
person, or from time to time in the same person.

To improve the performance of a screening test, a recommended device is the use of
multiple tests instead of a single test on each person.

Let n be the number of tests obtained from each person and y1,...yn denote the n test results
where yi = 1 if positive and 0 if negative.  Since the tests are repeated on the same individuals,
their results are not independent.  Indeed, we may expect that any two tests are positively
correlated.  It is of interest to study the dependence among tests and its effect on sensitivity,
specificity and predictive values of the composite test.

Let " denote the probability of a positive outcome of a single test in a given person.  The
population to which the test is applied is considered as being composed of two subpopulations:
true positives and true negatives.  In each subpopulation, " has a probability density.  Following
Meyer (1964) it is proposed that

and
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hence,

and

Note that
P(y=n " true positive) = E1("

n)
P(y=n " true negative) = E2("

n)

i.e. the nth  moment of " has probability interpretation.

Suppose we assign a person with more than k positive responses as screen-positive (+) and
a person with less than k+1 positive results as screen negative (-).  The sensitivity and specificity
of the composite test can be defined by

Note that
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Clearly, given n#2, !&
nk can be increased by using smaller k, and "&

nk can be increased by using
a larger k.  Moreover, using a sufficiently larger n and an appropriate k make either !&

nk or "&
nk

close to unity.  Generally, this cannot be achieved with the same k for both parameters regardless
of how large n is (see Meyer 1964).

A question of practical importance is, therefore, how much a replacement of a single test
by a composite test can improve both !&

nk and "&
nk simultaneously, for various choices of the

division between observed positives and negatives.

To address this question Meyer (1964) proved that 
(i)  For any given value of the ratio:

Moreover, under fairly general conditions

The implications of these relationships are as follows.  If the distributions of the non-
diseased and diseased according to # overlap, then either !&

nk or "&
nk, or both, is less than unity no

matter what values of n and k we choose.  In other words, the screening test can never give a
perfect separation between diseased and nondiseased no matter how many tests are given to each
individual regardless of how k is chosen.  Therefore the usefulness of a multiple readings test is
limited by the prior distributions of #.



η"nk > η"10 and θ"nk > θ"10

(ii)  Under certain conditions, we can always find two integers n>1 and 0%k%n, such that

are fulfilled simultaneously.

The important problem here is to find a dividing line (i.e. a value of k) which gives the best
estimates of !&

nk and "&
nk.  Two factors should be considered when the decision is made; first, the

relative importance of obtaining higher sensitivity or higher specificity and, second the prevalence
of true positives in the population.

A.  ESTIMATION OF PARAMETERS

From the previous presentation, it is clear that much of the usefulness of estimating
sensitivity and specificity using a multiple reading procedure depends on the prior knowledge of
the shape of f1(#) and f2(#) which for practical reasons are chosen to follow the already specified
beta distributions.  The strategies in estimating these parameters are 

(i) for each of N persons in the sample we apply a series of n independent screening tests, 
(ii) for all individuals in the sample (or a fraction of them), we apply a non-faulty

(confirmatory) test to identify the true positives.

Here we discuss the situation wherein all screened individuals are followed by a
confirmatory test.  The results are arranged as in Table 3.26.

Table 3.26
Results of Screened Individuals Followed by a

Confirmatory Test

Confirmatory

D D̄

Screening
Test

T Ntp Nfp N1.

Nfn Ntn N2.T̄

N.1 N.2

Let Nk be the number of persons with k positive screening results, (N ! "
n

k!0
Nk)

and let Nk
+ and Nk

- = Nk-Nk
+ denote the number of true positives and true negatives among

individuals with k positive tests respectively.  The likelihood of the sample is written as  
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Equating  to zero and solving for # we get:)(
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Noting that

then we can show that 

Example 3.14:

Four teats of 270 healthy cows were infected with a pathogen that causes mastitis.  After 21 days
each teat was tested for the mastitis infection by a new ELISA test followed by a confirmatory
bacterial culture test.  The result of the experiment is summarized in Table 3.27.

Table 3.27
Results of Mastitis Testing Using ELISA and Bacterial Culture Test

Number of positive
teats (tests)

k

Result of follow-up Total

Nk
+

True positives
Nk

-

True negatives
Nk

0
1
2
3
4

3
2
5
9
16

220
10
2
2
1

223
12
7
11
17

35 235 270

This gives , and V̂ar (#̂) = 0.00042.π̂ !
35
270

! 0.13
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IX.  SPECIAL TOPICS

A. GROUP TESTING

Applications of a screening program to estimate disease prevalence or to identify diseased
individuals in a large population is often an expensive and tedious process particularly if
individuals are tested one-by-one.  In situations where the disease prevalence is low and the cost
of testing each individual is high, the goal of proper screening may not be achieved.  In such
cases, it is often preferable to form pools of units, and then to test all units in a pool
simultaneously.  This is called group testing.  When the test result is positive (disease is present)
one concludes that there is at least one diseased individual in the group, but do not know which
one(s) or how many.  When individuals in the group are considered independent and have the
same probability P of being positive, the probability that a group of size k is negative is (1-P)k.
Hence, with probability 1-(1-P)k the group will contain at least one diseased individual.

Dorfman (1943) introduced the group testing approach to the statistical literature under the
assumption of a simple binomial model.  He applied this to the problem of blood testing for
syphilis.  The purpose of this section is to outline some procedures for estimating prevalence using
group testing.

1.  Estimating Prevalence by Group Testing

Suppose that we have n groups tested, each of size k, and let x be the number of

nonconformant or defective groups. This means than  can be used as the moment estimatorx
n

of 1-(1-P)k.

That is

from which

Clearly, the smaller the value of P, the larger the advantage of group testing over one-by-one unit
testing.  Moreover, the smaller the value of P the larger the chance that a group testing will be
shown to contain zero defectives.  The question is how large can P be before group testing is
ineffective.  Chen and Swallow (1990) showed that if r is the cost of a unit, then for
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group testing can have lower cost per unit information than will single - unit testing, a result
reported earlier by Sobel and Elashoff (1975).

In general it is often the case that data arise from unequal group sizes.  Suppose there are
m different group sizes k1, k2,...km and we denote yi as the number of defective groups out of ni

groups of size ki.

Assume that yi follows a binomial distribution with parameters (ni, 1-qki), where q=1-p.

The likelihood of the sample is given by

The log-likelihood is

Differentiating ( with respect to q and equating to zero we get

Solving , we have)(
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Hence,

and,

which is a result obtained by Walter et al. (1980).

If all the groups are of equal size, the variance of p̂ reduces to

Dorfman's (1943) work on group testing aimed at classifying the individuals into diseased and
non-diseased while reducing the expected number of tests.  His approach requires that if a group
is classified as defective, then each individual must be retested to identify its status.  In general,
Dorfman's approach possesses the following features:

a) an approximate solution for the optimal group size can be easily obtained in closed
form

b) every individual is subjected to at most two tests, and 
c) the entire testing protocol needs only two time periods given that the resources are

available to test the initial groups, and then all individuals in the group identified
as diseased are tested.

Let T be the total number of tests required by a group testing procedure.  Since N/k is the
number of groups of size k, and  N/k[1-(1-p)k]  is the expected number of infected groups of k in
a population of size N, then the expected number of tests required by the group testing procedure
is
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The relative cost r of the group testing as compared to the one-by-one testing is the ratio of E(T)
to N.  That is,

In many biomedical experiments, the tested material is always of a unit portion which is regulated
by the testing equipment.  Thus a test on a group of size k means that the test portion is a mixture
of k items each contributing 1/k units.  Therefore the contribution of a diseased item to the test
portion will be diluted as the group gets larger.  When the screening test is sensitive to the portion
of defective units in the group, this "dilution effect" may cause the test to fail in identifying the
defective status of the group and hence the binomial model is no longer appropriate.  Chen and
Swallow, based on Hwang's (1976) dilution-effect model, suggested that for a fixed d (dilution
factor) and ki, the parameter q is estimated by fitting a non-linear regression model:

Here, d=0 corresponds to no dilution effect, while d=1 indicates complete dilution.

B. EVALUATING THE PERFORMANCE OF MEDICAL SCREENING TESTS IN 
THE ABSENCE OF A GOLD STANDARD  (Latent class models)

We have already seen how sensitivity ! and specificity " are used as measures of
evaluating the performance of a screening test.  Equally important are their complement $=1-!
and %=1-" or respectively, the false negative and the false positive error rates associated with the
test.

The estimation of % and $ is a simple matter when the true diagnostic status can be
determined by using a gold standard.  Unfortunately, this is often impractical or impossible, and
% and $ are estimated by comparing a new test with a reference test, which also has error rates
associated with it.  Ignoring the error rates of the reference test would result in biased estimates



of the new test.  If the error rates of the reference test are known, Gart and Buck (GB) (1966)
derived estimates of the error rates of the new test.

In situations when the error rates of the new test and the reference test are unknown, Hui
and Walter (HW) (1980) showed how to estimate them.  They used the method of maximum
likelihood when the two tests (the new and the reference) are simultaneously applied to individuals
from two populations with different disease prevalences.

The estimators obtained by GB and HW are derived under the assumption that the two tests
are independent, conditional on the true diagnostic status of the subjects.  That is, the
misclassification errors of the two tests are assumed to be unrelated.  Vacek (1985) showed that
there are situations when this assumption of conditional independence cannot be justified.

In the following section we will first introduce the error rates estimation procedure
discussed by HW and examine the effect of conditional dependence on the estimates as was shown
by Vacek.

1.  Estimation of Error Rates Under the Assumption of Conditional Independence

Following HW, let the standard test (Test 1) and the new test (Test 2) be applied
simultaneously to each individual in samples from S populations.  Let Ng(g=1,2,...S) be a fixed
sample size, #g the probability of a diseased individual (Pr(D) = #) and %gh and $gh the false
positive and false negative rates of test h (h=1,2) in population g.  A crucial assumption for this
procedure is that conditional on the true disease status of an individual, the two tests have
independent error rates.  This assumption may be reasonable if the tests have unrelated bases, e.g.
x-ray versus blood test.  The results of the two tests in the gth sample can be summarized in the
following 2x2 table (Table 3.28).

Table 3.28
The Result of the gth Sample

g=1,2,...S

Test (1)

T1=1 (positive) T1=0 (negative)

Test (2)
T2=1 Pg11 Pg01

T2=0 Pg10 Pg00

We shall drop the subscript g for the time being.



P11 ! Pr[T1!1, T2!1]

! Pr[T1!1, T2!1 $ D]Pr(D)$Pr[T1!1, T2!1 $ D]Pr(D)

Pr[T1!1, T2!1 $ D] ! Pr[T1 $ D]Pr[T2 $ D]

! η1η2 ! (1#β1)(1#β2)

Pr[T1!1, T2!1 $ D] ! Pr[T1!1 $ D]Pr[T2!1 $ D]

! (1#θ1)(1#θ2) ! α1α2 .

P11 ! (1#β1)(1#β2)π $ α1α2(1#π)

Pg11 ! (1#βg1)(1#βg2)πg $ αg1αg2(1#πg). (g!1,2) (3.63)

P01 ! Pr[T1!0, T2!1]

! Pr[T1!0, T2!1 $ D]Pr(D) $ Pr[T1!0, T2!1 $ D]Pr(D)

! Pr[T1!0 $ D]Pr[T2!1 $ D]Pr(D)$Pr[T1!0 $ D]Pr(T2!1 $ D]Pr(D)

! (1#η1)η2π$θ1(1#θ2)(1#π)

! β1(1#β2)π$(1#α1)α2(1#π)

Because of the assumption of conditional independence we write

and

Hence

which means that for the gth sample we write

In a similar fashion we describe the probabilities followed by the correspondingP01 and P10 ,
derivations for the gth sample ( ).Pg01 , Pg10 and Pg11

Hence,

and for the gth sample,



Pg01 ! βg1(1#βg2)πg$(1#αg1)αg2(1#πg) (3.64)

P10 ! Pr[T1!1, T2!0]

! Pr[T1!1, T2!0 $ D]Pr(D)$Pr[T1!1, T2!0 $ D]Pr(D)

! Pr[T1 $ D]Pr[T2!0 $ D]Pr(D)$Pr[T1!1 $ D]Pr[T2!0 $ D]Pr(D)

! η1(1#η2)π $ (1#θ1)θ2(1#π)

! (1#β1)β2π$α1(1#α2)(1#π)

Pg10 ! βg2(1#βg1)πg$αg1(1#αg2)(1#πg) (3.65)

Pg00 ! 1#Pg11#Pg01#Pg10

! βg1βg2πg$(1#αg1)(1#αg2)(1#πg) .
(3.66)

L ! #2
g!1

Pg11
Ng11 Pg01

Ng01 Pg10
Ng10 Pg00

Ng00

Ngij ! (Ng) P %

gij g!1,2; i , j!0,1

Then,

which for the gth sample is,

and finally

The likelihood function of the two samples is given by

where

are the observed frequencies associated with the cells and P*
gij are the observed proportions of

sample g with test outcome i,j in tests 1 and 2 respectively (i,j = 1,0).

Parameter estimates can now be obtained by maximizing the loglikelihood function.
However, it should be realized that in general, for k tests applied to S populations, there are   (2k-1)S
degrees of freedom for estimating (2k + 1)S parameters.  In the present example there are 6 degrees



(2k#1)S # (2k$1)S

or 2k # 2(k$1)

k # 3

S # k / (2k#1#1) .

α1 $ β1 < 1

L ! #2
g!1

[ [ (1#β1)(1#β2)πg$α1α2(1#πg)]
Ng11

[β1(1#β2)πg$(1#α1)α2(1#πg)]
Ng01

[β2(1#β1)πg$(1#α2)α1(1#πg)]
Ng10

[β1β2πg$(1#α1)(1#α2)(1#πg) ]
Ng00 ] .

of freedom and ten parameters ($11, $12, $21, $22, %11, %12, %21, %22, #1, #2).  This model is
therefore overparameterized. The necessary condition for parameter estimability is

To study the case of most practical importance, that is when k=2, HW assumed that
%gh=%h and $gh=$h (h=1,2) for all g=1...S.  The number of parameters to be estimated is now
2k+S and the number of degrees of freedom is larger than the number of parameters if

For k=2 the model can now be applied to data from two populations.  The model is still
unidentified, and HW introduced the constraint

which is a reasonable assumption for the standard test if it is of any practical value.

Hence,

2.  The Effect of Conditional Dependence (Vacek 1985)

Often the assumption that the misclassification errors of the two tests are assumed to be
unrelated cannot be justified, particularly if the tests are based on physiologic phenomena.
Thibodeau (1981) has investigated the effect of a positive correlation between diagnostic tests
when the error rates of a new test are estimated by comparison with a reference test having known



Bias(α̂1) !
[(1#β1#α1)(1#β2#α2)$(eb#ea)#D]

[2(1#β2#α2)]
(3.67)

Bias(β̂1) !
[(1#β1#α1)(1#β2#α2)$(ea#eb)#D]

[2(1#β2#α2)]
(3.68)

Bias(π̂g) ! %(2D)#1[(2πg#1)(1#β1#α1)(1#β2#α2)#(eb#ea)$D]#πg& (3.69)

D ! ± (1#β1#α1)
2(1#β2#α2)

2$2(eb$ea)(1#β1#α1)(1#β2#α2)$(eb#ea)
2 1/2

ea%β1(1#β2) and eb%β2(1#b1) ,

error rates.  He demonstrated that the assumption of test independence will result in an
underestimation of the error rates of the new test if it is positively correlated with the reference
test.

Vacek (1985) examined the effect of test dependence on the error rate and prevalence
estimators for situations in which both tests have unknown error rates.  She denoted the covariance
between the two tests (when the true diagnosis is positive) by eb, and ea as the covariance when
the true diagnosis is negative.  Consequently, if a subject is a true positive, the probability that
both tests will be positive is (1-$1)(1-$2)+eb, and if the true diagnosis is negative, the probability
that both tests will be negative is (1-%1)(1-%2)+ea.  Eliminating unnecessary algebra, Vacek
showed that

where

The expressions for Bias (%̂2), Bias ( ) are identical to the above equations except for a change!$2
of subscripts in the denominator of the bias term.

Since the prevalence parameters #1 and #2 do not appear in equations (3.67) and (3.68),
they have no effect on the bias of the error rate estimators.  Moreover, the bias in #̂i does not
depend on #j (i*j=1,2).

One should also notice that the likelihood function of HW can be rewritten to include the
covariance terms ea and eb, but this results in an overparameterization.  However, if ea and eb are
specified as fixed ratios of their maximum value:



no new parameters are introduced.  The likelihood can then be maximized numerically to obtain
parameter estimates which are based on the assumption that the two tests are conditionally
dependent.  Differences between these estimates and those obtained under the assumption of
independence indicate the size of bias in the latter when the specified degree of dependence exists.



yi ! !
k

j!0
βj xji " εi (4.1)

E(yi) ! !
k

j!0
βjxji and Var(yi) ! σ2 .

Chapter 4

LOGISTIC REGRESSION

I.  INTRODUCTION

In many research problems, it is of interest to study the effects that some variables exert on
others.  One sensible way to describe this relationship is to relate the variables by some sort of
mathematical equation.

In most applications statistical models are mathematical equations constructed to
approximately relate the response (dependent) variables to a group of extraneous (explanatory)
variables.

When the response variable, denoted by y, is continuous and believed to depend linearly on
k variables x1, x2,...xk through unknown parameters β0, β1,...βk, then this linear (where "linear" is used
to indicate linearity in the unknown parameters)  relationship is give as

where x0i = 1 for all i=1,2,...n.

The term εi is unobservable random error representing the residual variation and is assumed
 
to be independent of the systematic component   It is also assumed that!

k

j!0
βj xji

E(εi) = 0 and Var (εi) = σ2; hence,

To fit the model (4.1) to the data (yi, xi) one has to estimate the parameters β0...βk.  The most
commonly used methods of estimation are (i) the method of least squares and (ii) the method of
maximum likelihood.

Applications of those methods of estimation to the linear regression model (4.1) are
extensively discussed in Draper & Smith (1981), Mosteller & Tukey (1977) and many other sources.
It should be noted that no assumptions on the distribution of the response variable y are needed
(except the independence of y1...yn) to estimate the parameters by the method of least squares.
However, the maximum likelihood requires that the sample y = (y1...yn) is randomly drawn from a
distribution where the specified structure of that distribution in most applications is,



yi ! !
ni

j!1
yij

pi ! !
k

j!0
βj xji (4.2)

s ! !
n

i!1
p̂i # !

k

j!0
βj xji

2

sw ! !
n

i!1
Var(p̂i)

#1 p̂i # !
k

j!0
βj xji

2

(4.3)

 . N !
k

j!0
βj xji , σ2

The least squares estimates of the regression parameters will then coincide with those obtained by
the method of maximum likelihood.  Another remark that should be made here is that there is
nothing in the theory of least squares that restricts the distribution of the response variable to be
continuous, discrete or of bounded range.  For example suppose that we would like to model the

proportion  (i=1,2,...m) of individuals suffering from some respiratory illness, observedp̂i !
yi

ni

over several geographical regions, as a function of k covariates, where

yij = 1 if diseased
" 0 else

That is, we assume the relationship between pi and the covariates to be

The least squares estimates are obtained by minimizing

Several problems are encountered when the least squares method is used to fit model (4.2);
(i) One of the assumptions of the method of least squares is variance

homogeneity; that is, Var(yi) = σ2 does not vary from one observation to
another.  Since for binary data, yi follows a binomial distribution with mean

 nipi and variance nipi (1-pi), then .Var ( p̂i ) !
pi (1#pi )

ni

As was proposed by Cox and Snell (1989), one can deal with the variance heterogeneity by
applying the method of weighted least squares using the reciprocal variance as a weight.  The
weighted least squares estimates are thus obtained by minimizing



X!D " N(µ1,σ
2)

Note that wi
-1= Var(p̂i) depends on pi which in turn depends on the unknown parameters β0,β1,...βk

through the relationship (4.2).

Fitting the model (4.2) is done quite easily using PROC REG in SAS together with the
WEIGHT statement, where ŵi are the specified weights.

(ii) Note that 0 # pi # 1, and the estimates β0,...βk of the regression parameters are
not constrained.  That is, they are permitted to attain any value in the interval
(-$, $).  Since the fitted values are obtained by substituting β̂0,...β̂k in (4.2),

 

p̂i ! !
k

j!0
β̂j xji

thus, there is no guarantee that the fitted values should fall in the interval [0,1].

To overcome the difficulties of using the method of least squares to fit a model where the
response variable has a restricted range, it is suggested that a suitable transformation be employed
so that the fitted values of the transformed parameter vary over the interval .  This chapter(#$ , $)
is devoted to the analysis of binomially distributed data where the binary responses are independent.
Attention will be paid to situations where the binary responses are obtained from clusters and hence
cannot be assumed to be independent.

II.  THE LOGISTIC TRANSFORMATION

Let us consider the following example which may help the reader understand the motives of
a logistic transformation.

Suppose that we have a binary variable y that takes the value 1 if a sampled individual is
diseased and takes the value 0 if not diseased.

Let  P(D) = Pr [y=1] = π  and  P ( ) = Pr [y=0] = 1-π.  Moreover, suppose that X is a risk factor thatD̄
has normal distribution with mean µ1 and variance σ2 in the population of diseased, that is

which reads, given the information that the individual is diseased, the conditional distribution of x
is N(µ1, σ2).  Hence



f(X!D) !
1

σ 2π
exp ["(x"µ1)

2/2σ2] .

f ( X!D̄ ) !
1

σ 2π
exp ["(x"µ2)

2/2σ2]

p ! Pr[y!1!X!x] !
p(y!1 , X!x)

f(x)

p !
f (X!D ) P(D)

f (X!D ) P(D) # f (X!D̄ )P(D̄)

!

π
σ 2π

exp
"(x"µ1)

2

2σ2

π
σ 2π

exp
"(x"µ1)

2

2σ2
#

(1"π)
(σ 2π)

exp
"(x"µ2)

2

2σ2

.

p ! Pr [y!1!X!x ] !
e
β0#β1x

1#e
β0#β1x

(4.4)

β0 ! "ln 1"π
π

"
1

2σ2
(µ1"µ2)(µ1#µ2)

β1 !
µ1"µ2

σ2
.

In a similar manner, we assume that the risk factor X, in the population of non-diseased has a mean
µ2 and variance σ2.  That is

Since

then from Bayes' theorem,

Simple manipulation shows that

where

and

Note that



ln
p

1!p
" β0#β1x . (4.5)

ψ "
P11P00

P10P01

" e
β1 ,

So, the log-odds is a linear function of the explanatory variable (here, the risk factor) X.  The
logarithmic transformation on the odds is called "logit".

Remarks

The regression parameter β1 has log-odds ratio interpretation in epidemiologic studies.  To
show this, suppose that the exposure variable has two levels (exposed, not exposed).  Let us define
a dummy variable X that takes the value 1 if the individual is exposed to the risk factor, and 0 if not
exposed.

Since from equation (4.4) we have

= Pr ( y=1 | X=1) = P1 1

e

e

β β

β β

0 1

0 11

+

++

= Pr ( y=0 | X=1) = P0 1

1

1 0 1+ +e β β

= Pr ( y=1 | X=0) = P1 0

e

e

β

β

0

01 +

= Pr ( y=0 | X=0) = P00

1

1 0+ e β

and that the odds ratio is

it follows that ln ψ=β1.

The representation (4.5) can be extended such that logit (p) is a function of more than just
one explanatory variable.

Let y1, y2,...yn be a random sample of n successes out of n1, n2,...nn trials, and let the
corresponding probabilities of success be p1, p2,...pn.  If we wish to express the probability pi as a
function of the explanatory variables x1i,...xki, then the generalization of (4.5) is



logit (pi) ! log
pi

1"pi

! !
k

j!0
βj xji (4.6)

pi ! e
ηi / (1#e

ηi) (4.7)

L(β) ! "n
i!1

ni

yi

p
yi

i q
ni"yi

i

! "n
i!1

ni

yi

e
ηi

yi 1

1#e
ηi

ni

(4.8)

!(β) ! !
n

i!1
yiηi " ni ln(1#e

ηi) (4.9)

!r !
"l(β)
"βr

! !
n

i!1
yj xri"ni xri e

ηi(1#e
ηi)"1

! !
n

i!1
xri (yi"ni pi) r!0,1,2,...k

(4.10)

x0i=1 for all i=1,2,...n.

We shall denote the linear function   by ηi, which is usually known as the link function.!
k

j!0
βj xji

Hence,

The binomially distributed random variables yi (i=1...n) have mean µi = nipi and variance nipiqi.
Since we can write yi=µi+εi, then the residuals εi=yi-µi have zero mean.  Note that, in contrast to the
normal linear regression theory, εi do not have a distribution of a recognized form.

Fitting the model to the data is achieved after the model parameters β0,...βk have been
estimated.

The maximum likelihood method is used to estimate the parameters where the likelihood
function is given by:

The loglikelihood is given by:

Differentiating !(β) with respect to βr we have



I ! #E[%rs] ! #E &2%(β)
&βr&βs

! !
n

i!1
ni xri xsi pi(1#pi) (4.11)

p̂i ! e
η̂i / 1"e

η̂i , where

η̂i ! !
k

j!0
β̂j xji

The (k+1) equations in (4.10) can be solved numerically.
Since

the large sample variance-covariance matrix is I-I.
Once the parameters have been estimated, the predicted probability of success is given by

with  = νrr, where νrr is the rth diagonal element of .ˆVar ( β̂ r ) Î
#1

Using PROC LOGISTIC in SAS, we obtain the maximum likelihood estimates, their
standard errors SE( )=νrr

1/2 and the Wald chi-square values, ( )/νrr, r=0,1,...k which can be usedβ̂ r β̂2
r

to test the hypothesis that the corresponding coefficient in ηi is zero.

III.   CODING CATEGORICAL EXPLANATORY VARIABLES AND 
INTERPRETATION OF COEFFICIENTS

Recall that when (4.4) is applied to the simple case of one independent variable which has
two levels (exposed, not exposed) we defined a dummy variable X such that Xi=1 if the ith individual
is exposed, and Xi=0 if the ith individual is not exposed.

Now, suppose that the exposure variable X has m>2 categories.  For example X may be the
strain or the breed of the animal, or it may be the ecological zone from which the sample is collected.
Each of these variables (strain, breed, zone,...etc.) is qualitative, or a factor variable which can take
a finite number of values known as the levels of the factor.  To see how qualitative independent
variables or factors are included in a logistic regression model, suppose that F is a factor with m
distinct levels.  There are various methods in which the indicator variables or the dummy variables
can be defined.  The choice of a particular method will depend on the goals of the analysis.  One way
to represent the m levels of the factor variable F is to define m-1 dummy variables f1, f2...fm-1 such
that the portion of the design matrix corresponding to those variables looks like Table 4.1.



Table 4.1
Dummy Variables for the Factor Variable F Within m Levels

Dummy Variables

Factor level f1 f2 fm-1

1
2
3
.
.
m

0
1
0
.
.
0

0
0
1
.
.
0

0
0
0
.
.
1

Example 4.1

The following data are the results of a carcinogenic experiment.  Different strains of rats have
been injected with carcinogen in their foot pad.  They were then put on a high fat diet and at the
end of week 21 the number with tumours (y) were counted.

Table 4.2
Hypothetical Results of Carcinogenic Experiment.  Counts of Rats with Tumours

Strain (1) Strain (2) Strain (3) Strain (4)

yi 10 20 5 2

ni-yi 45 20 20 43

ni 55 40 25 45

4.78 21.50 5.375ψ̂

Using strain (4) as a reference group we define the three dummy variables

Xj = 1 if rat is from strain j j=1,2,3
" 0 otherwise

The results of fitting the logistic regression model to the data in Table 4.2 are given in Table 4.3.

Table 4.3
Maximum Likelihood Analysis

Variable Estimates SÊ Wald Chi-square ψ̂

Intercept -3.068 !̂0 .723 17.990

Strain (1) 1.564 !̂1 .803 3.790 4.780

Strain (2) 3.068 !̂2 .790 15.103 21.500

Strain (3) 1.682 !̂3 .879 3.658 5.375



ψ̂ (strain(1) ; strain(4)) !
(10)(43)
(45)(2)

! 4.78

SE [ln ψ̂ (strain(3) ; strain(4)] !
1
5
"

1
20

"
1
2
"

1
43

1/2

! .879 ,

β̂j ± Zα/2

ˆSE(β̂j) ,

exp [β̂j ± Zα/2

ˆSE(β̂j)] .

Note that the last row of Table 4.2 gives the odds ratio for each strain using strain (4) as the
reference level.  For example, for strain (1) the estimated odds ratio is

Moreover, ln  (strain (1); strain (4)) = ln (4.78) = 1.56 = .  Hence, as we mentioned earlier,ψ̂ β̂1
the estimated parameters maintain their log-odds ratio interpretation even if we have more than
one explanatory variable in the logistic regression function.  One should also note that the
estimated standard error of the odds ratio estimate from a univariate analysis is identical to the
standard error of the corresponding parameter estimate obtained from the logistic regression
analysis.

For example,

which is identical to SE ( ) as shown in Table 4.3.β̂3

We can construct approximate confidence limits using the same approach used in
 Chapter 3.  The (1-") 100% confidence limits for the parameter are 

and the limits for the odds ratio are

IV.  INTERACTION AND CONFOUNDING

In Example 4.2 we showed how the logistic regression model can be used to model the
relationship between the proportion or the probability of developing tumours and the strain.  Other
variables could also be included in the model such as sex, the initial weight of each mouse, age
or other relevant variables.  The main goal of what then becomes a rather comprehensive model
is to adjust for the effect of all other variables and the effect of the differences in their distributions
on the estimated odds ratios.  It should be pointed out (Hosmer and Lemeshow, 1989) that the
effectiveness of the adjustment (measured by the reduction in the bias of the estimated coefficient)
depends on the appropriateness of the logit transformation and the assumption of constant slopes
across the levels of a factor variable.  Departure from the constancy of slopes is explained by the



existence of interaction.  For example, if we have two factor variables, F1 and F2 , where the
response at a particular level of F1 varies over the levels of F2 , then F1 and F2 are said to interact.
To model the interaction effect, one should include terms representing the main effects of the two
factors as well as terms representing the two-factor interaction which is represented by a product
of two dummy variables.  Interaction is known to epidemiologists as "effect modifications".  Thus,
a variable that interacts with a risk factor of exposure variable is termed an "effect modifier".  To
illustrate, suppose that factor F1 has three levels (a1 , a2 , a 3 ), and factor F2 has two levels ( b1 ,
b2 ).  To model the main effects and their interactions we first define the dummy variables.

xi = 1 if an observation belongs to the ith level of factor F1 (i=1,2)
" 0 otherwise

which means that a3 is the referent group.  Similarly, we define a dummy variable b=1 if the
individual belongs to the second level of factor F2.  Suppose that we have the following 5 data
points (Table 4.4):

Table 4.4
Hypothetical Data Points of a Two Factor Experiment

observation y F1 F2

1
2
3
4
5

1
1
0
0
1

a1

a1

a2

a3

a3

b1

b2

b2

b2

b1

To model the interaction effect of F1 and F2, the data layout (Table 4.5) becomes

Table 4.5
Dummy Variables for Modelling Interaction of Two Factors

observation y x1 x2 b bx1 bx2

1
2
3
4
5

1
1
0
0
1

1
1
0
0
0

0
0
1
0
0

0
1
1
1
0

0
1
0
0
0

0
0
1
0
0

Another important concept to epidemiologists is confounding.  A confounder is a covariate
that is associated with both the outcome variable (the risk of disease, say) and a risk factor.  When
both associations are detected then the relationship between the risk factor and the outcome
variable is said to be confounded.



Kleinbaum et al. (1988) recommended the following approach (which we extend to logistic
regression) to detect confounding in the context of multiple linear regression.  Suppose that we
would like to describe the relationship between the outcome variable y and a risk factor x,
adjusting for the effect of other covariates x1,... xk-1 (assuming no interactions are involved) so that

    (4.12)η β β β= + + −0 1 1 1x xk k
!

Kleinbaum et al. argued that confounding is present if the estimated regression coefficient !1 of
the risk factor x, ignoring the effects of x1...xk-1 is meaningfully different from the estimate of !1

based on the linear combination (4.12) which adjusts for the effect of x1...xk-1.

Example 4.2

To determine the disease status of a herd with respect to listeriosis (a disease caused by bacterial
infection), fecal samples are collected from selected animals, and a 'group testing' technique is
adopted to detect the agent responsible for the occurrence.  One positive sample means that there
is at least one affected animal in the herd, hence the herd is identified as a 'case'.  

In this example, we will consider possible risk factors, such as herd size, type of feed and
level of mycotoxin in the feed.  

Herd sizes are defined as:  small (25-50),  medium (50-150), and large  (150-300).
The two types of feed are dry and non dry; the three levels of mycotoxin are low, medium and
high.   Table 4.6 indicates the levels of mycotoxin found in different farms and the associated
disease occurrences.

Table 4.6
Occurrence of Listeriosis in Herds of Different Sizes with Different Levels of Mycotoxin

Herd Size

Level of
Mycotoxin

Type of Feed Small Medium Large

Case Ctrl Case Ctrl Case Ctrl

Low Dry 2 200 15 405 40 300

Non Dry 1 45 5 60 5 4

Medium Dry 5 160 15 280 40 100

Non Dry 4 55 3 32 0 2

High Dry 2 75 60 155 40 58

Non Dry 8 10 10 20 4 4



ψ̂ !
(1014)(67)
(68)(629)

! 1.59 .

ψ̂ !
(1014)(124)
(322)(68)

! 5.74

Before we analyze this data using multiple logistic regression, we should calculate some basic
results.  The study looks at the type of feed as the risk factor of primary interest.  Suppose that
we would like to look at the crude association between the occurrence of the disease (case/ctrl) and
the level of mycotoxin (low, medium, high).   Table 4.7 summarizes the relationship between the
disease and levels of mycotoxin (LM) ignoring the effect of herd size (HS) and the type of feed
(TF).  

Table 4.7
Disease Occurrence at Different Levels

of Mycotoxin

Disease

LM D+ D- Total ####

low 68 1014 1082 1

medium 67 629 696 1.59

high 124 322 446 5.74

('low' is the referent group)

The estimated odds of disease for a farm with medium level of mycotoxin relative to a farm with
low level is  

This suggests that herds with medium levels are about 1.5 times more likely to have diseased
animals than herds with low levels.  On the other hand, the likelihood of disease on a farm with
high levels is about 6 times relative to a farm with low levels

Now we reorganize the data (Table 4.8) so as to look at the association between disease
and the type of feed while adjusting for the herd size. 
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Table 4.8
Listeriosis Occurrence when Considering Herd Size

 and Type of Feed

Type of Feed Herd Size

Small Medium Large

case ctrl case ctrl case ctrl

dry 9 435 90 840 120 458

non-dry 13 110 18 112 9 10

Ni 567 1060 597

0.175 0.667 0.291ψ̂

When considering each herd size separately we have the following results.

Small

case control

dry 9 435

not dry 13 110

567

Medium

case control

dry 90 840

not dry 18 112

1060
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ψ̂3 ! 0.291
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SE (ln ψ̂3) ! 0.471
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( 1
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)"( 1
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! #0.867 .

Large

case control

dry 120 458

not dry 9 10

597

Testing for interaction between herd size and type of feed is done using Woolf's test.

Thus,  = e-0.867 = 0.420ψ̂

The $2 test for interaction using the Woolf  is obtained as follows:χ2
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Since $w
2 is greater than $2

(.05,2) there is evidence of an interaction between the herd size and the
type of feed used on the farm.  We investigate this in Example 4.3.

V.  THE GOODNESS OF FIT AND MODEL COMPARISONS

Measures of goodness of fit are statistical tools used to explore the extent to which the
fitted responses obtained from the postulated model compare with the observed data.  Clearly, the
fit is good if there is a good agreement between the fitted and the observed data.  The Pearson's
chi-square ($2) and the likelihood ratio test (LRT) are the most commonly used measures of
goodness of fit for categorical data.  The following sections will give a brief discussion on how
each of the chi-square and the LRT criteria can be used as measures of goodness of fit of a logistic
model.

A. PEARSON'S %%%%2 - STATISTIC

This statistic is defined by
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the linear predictor, obtained by substituting the MLE of the !j in &i.  The distribution of $2 is
asymptotically that of a chi-square with (n-k-1) degrees of freedom.  Large values of $2 can be
taken as evidence that the model does not adequately fit the data.  Because the model parameters
are estimated by the method of maximum likelihood, it is recommended that one uses the LRT
statistic as a criterion for goodness of fit of the logistic regression model.

B. THE LIKELIHOOD RATIO CRITERION (Deviance)

Suppose that the model we would like to fit (called current model) has k+1 parameters,
and that the loglikelihood of this model given by (4.8) is denoted by %c.  That is

[ ]# c i i ii

n
y n e i= − +

=∑ η ηln ( )1
1

     [ ]= + − −
=∑ y p n y pi i i i ii

n
ln ( ) ln ( )1

1

Let p̂i be the maximum likelihood estimator of pi under the current model.  Therefore, the
maximized loglikelihood function under the current model is given by

McCullagh and Nelder (1983) indicated that, in order to assess the goodness of fit of the current
model,  should be compared with another log likelihood of a model where the fitted responses%̂c
coincide with the observed responses.  Such a model has as many parameters as the number of
data points and is thus called the full or saturated model and is denoted by  .  Since under the!% s
saturated model the fitted are the same as the observed proportions 

the maximized loglikelihood function under the saturated model is
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The metric  which is called the Deviance, was suggested by McCullagh and NelderD ! #2[ %̂ c # %̃ s ]
(1983) as a measure of goodness of fit of the current model.

As can be seen, the Deviance is in fact the likelihood ratio criterion for comparing the
current model with the saturated model.  Now, since the two models are trivially nested, it is
tempting to conclude from the large sample of the likelihood theory that the deviance is distributed
as a chi-square with (n-k-1) degrees of freedom if the current model holds.  However, from the
standard theory leading to the chi-square approximation for the null distribution of the likelihood
ratio statistic we find that:  if model A has pA parameters and model B (nested in model A) has pB

parameters with pB<pA, then the likelihood ratio statistic that compares the two models has chi-
square distribution with degrees of freedom pA-pB as n'$ (with pA and pB both fixed).  If A is the
saturated model, pA=n so the standard theory does not hold.  In contrast to what has been reported
in the literature, Firth (1990) pointed out that the deviance does not, in general, have an
asymptotic chi-square distribution in the limit as the number of data points increase.
Consequently, the distribution of the deviance may be far from chi-square, even if n is large.

There are situations however when the distribution of the deviance can be reasonably
approximated by a chi-square.  The binomial model with large ni is an example.  In this situation
a binomial observation yi may be considered a sufficient statistic for a sample of ni independent
binary observations each with the same mean, so that ni ' $ (i=1,2,...n) plays the role in
asymptotic computations as the usual assumption n ' $.  In other words, the validity of the large-
sample approximation to the distribution of the deviance, in logistic regression model fit, depends
on the total number of individual binary observations,

rather than on n, the actual number of data points yi.  Therefore, even if the number of binomial
observations is small, the chi-square approximation to the distribution of the deviance can be used
so long as ' ni is reasonably large.

More fundamental problems with the use of the deviance for measuring goodness of fit
arise in the important special case of binary data, where ni=1 (i=1,2,...n).  The likelihood
function for this case is

and
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for the saturated model p̂i=yi.  Now since yi=0 or 1, ln yi=(1-yi) ln (1-yi)=0;  ; and the%̂ c
deviance is

We now show that D depends only on the fitted values p̂i and so is uninformative about the
goodness of fit of the model.  To see this, using (4.10) where ni=1, we have

Multiplying both sides of (4.14) by !̂r and summing over r:

from which

Substituting (4.15) into (4.13) we get

Therefore D is completely determined by p̂i and hence useless as a measure of goodness of fit of
the current model.  However, in situations where model (A) is nested in another model (B), the



χ2 ! !
n

i!1

( yi#p̂i )
2

p̂iq̂i

difference in deviance of the two models can be used to test the importance of those additional
parameters in model (B).

The Pearson's $2:

encounters similar difficulties.  It can be verified that, for binary data (ni=1 for all i), $2 always
takes the value n and is therefore completely uninformative.  Moreover, the $2 statistic, unlike the
difference in deviance, cannot be used to judge the importance of additional parameters in a model
that contains the parameters of another model.

We now explain how the difference in deviance can be used to compare models.
Suppose that we have two models with the following link functions

Model Link (&)

A !
p1

j!0
βjxji

B !
p1"p2

j!0
βjxji

Model (A) contains p1+1 parameters and is therefore nested in model (B) which contains
p1+p2+1 parameters.  The deviance under model (A) denoted by, DA carries (n-p1-1) degrees of
freedom while that of model (B) denoted by DB carries (n-p1-p2-1) degrees of freedom.  The
difference DA-DB has an approximate chi-square distribution with (n-p1-1)-(n-p1-p2-1)=p2 degrees
of freedom.  This chi-square approximation to the difference between two deviances can be used
to assess the combined effect of the p2 covariates in model (B) on the response variable y.

The model comparisons based on the difference between deviances is equivalent to the analysis
based on the likelihood ratio test.  In the following example, we illustrate how to compare between
models using the likelihood ratio test (LRT).

Example 4.3

Here we apply the concept of difference between deviances, or LRT, to test for the significance
of added variables.  First, we fitted a logistic regression model with main effects, where the
variables were coded as:



rf=1 if  feed is dry, else  rf=0  
h1=1 if herd size if large, else h1=0
h2=1 if herd size is medium, else h2=0
m1=1 if mycotoxin level is high, else m1=0
m2=1 if mycotoxin level is medium, else m2=0

The results of fitting a model using the following SAS program are given below.

data myco;
input rf herdsize $  lmyco $ dis nodis;

n=dis+nodis;
if herdsiz=’lg’ then h1=1;
else h1=0;
if herdsize=’m’ then h2=1;
else h2=0;
if lmyco=’h’ then m1=1;
else m1=0;
if lmyco=’m’ then m2=1;
else m2=0;
rfm1=rf*m1;
rfm2=rf*m2;

cards;
1 s  l 2   200
0 s  l 1     45
1 s  m 5   160
0 s  m 4     55
1 s  h   2     75
0 s  h 8     10
1 m  l  15  405
0 m  l  5      60
1 m  m  15  280
0 m  m  3      32
1 m  h   60  155
0 m  h 10    20
1 lg  l 40  300
0 lg  l 5        4
1 lg  m 40  100
0 lg  m 0        2
1 lg  h 40    58
0 lg  h 4        4
;
run;

/*  Fitting the logistic model with main effects */

proc logistic;
model dis/n = rf h1 h2 m1 m2  / covb;
run;



/* Fitting the logistic model with interaction between type of feed and level of mycotoxin */

proc logistic;
model dis/n = rf h1 h2 m1 m2 rfm1 rfm2 / covb;
run;

An excerpt from the output that results from running the model without interaction is as follows:

Model Fitting Information and Testing Global Null Hypothesis BETA=0

                              Intercept
                         Intercept      and
           Criterion       Only           Covariates    Chi-Square for Covariates

           AIC            1602.415      1362.475         .
           SC             1608.122      1396.718         .
           -2 LOG L   1600.415      1350.475      249.940 with 5 DF (p=0.0001)
           Score              .                         .        261.269 with 5 DF (p=0.0001)

                           Analysis of Maximum Likelihood Estimates

                          Parameter    Standard       Wald               Pr >             Standardized       Odds
Variable  DF     Estimate       Error           Chi-Square    Chi-Square      Estimate           Ratio
 
INTERCPT   1       -3.4712        0.2870         146.3261         0.0001               .                       .
RF          1       -0.8637        0.2131          16.4326          0.0001        -0.156055          0.422
H1        1        2.3401        0.2581          82.2196          0.0001         0.571864         10.383
H2       1        1.0819        0.2487          18.9246          0.0001         0.297994          2.950
M1      1        1.9898        0.1751         129.2011         0.0001         0.439363          7.314
M2      1        0.7288        0.1860          15.3544          0.0001         0.186369          2.073

All the covariates have a significant effect on the disease.  We shall call this model Ma.  When
the interaction between type of feed and levels of mycotoxin (rfm1=rf*m1, rfm2=rf*m2) are
included we get the following results (we shall refer to this model as Mb:

              Model Fitting Information and Testing Global Null Hypothesis BETA=0

                                      Intercept
                 Intercept        and
           Criterion       Only             Covariates      Chi-Square for Covariates

           AIC              1602.415      1364.527            .
           SC               1608.122      1410.184            .
           -2 LOG L     1600.415      1348.527         251.888 with 7 DF (p=0.0001)
           Score                .                      .              266.485 with 7 DF (p=0.0001)
                  



Deviance ! (λa "λb ) ! 1350"1348.527 ! 1.948 .

Analysis of Maximum Likelihood Estimates

                                  Parameter     Standard       Wald          Pr >       Standardized          Odds
Variable          DF     Estimate      Error      Chi-Square    Chi-Square         Estimate         Ratio

INTERCPT 1       -3.2236      0.3804       71.8042        0.0001               .        .
RF    1       -1.1221      0.3604        9.6937         0.0018       -0.202738          0.326
H1          1        2.3129      0.2578       80.4693        0.0001        0.565209      10.104
H2           1        1.0530      0.2491       17.8745        0.0001        0.290025         2.866
M1              1        1.8497      0.4359       18.0091        0.0001       0.408416        6.358
M2               1        0.0966      0.5167        0.0350         0.8517       0.024702         1.101
RFM1       1        0.1617      0.4749        0.1160         0.7334        0.033918       1.176
RFM2         1        0.7283      0.5527        1.7364         0.1876         0.178256       2.072

                           

One should realize that the parameter estimates of the main effects in Mb are not much different from
what they are under Ma.  Now, to test for the significance of the interaction effects using the
deviance, we use the following notation:

Let,      and   , and hence,  λa ! "2 Log L under Ma λb ! "2 Log L under Mb

Asymptotically, the deviance has a chi-square distribution with degrees of freedom equal to 7-5=2.
Therefore, we do not have sufficient evidence to reject the null hypothesis of no interaction effect.

General Comments:
  
1.  The main risk factor of interest in this study was the type of feed (rf).  Since the sign of t
estimated coefficient of rf is negative, then according to the way we coded that variable, dry feed
seems to have sparing effect on the risk of listeriosis.  

2.  From Ma , adjusting for herd size, the odds of a farm being a case with dry feed and high level
of mycotoxin, relative to a farm with low level of mycotoxin is .exp ["0.864 # 1.9898] ! 3.08

3.  From Mb  ,  the same odds ratio estimate is, 

 exp ["1.122(1"0) # 1.8497(1"0) # 0.1617(1"0) ] ! 2.43 .

The difference, 3.08-2.43=0.65, is the bias in the estimated odds ratio from Ma, if the interaction
effects were ignored.



VI.  LOGISTIC REGRESSION OF CLUSTERED BINARY DATA

A.  INTRODUCTION

Clustered samples of binary data arise frequently in many statistical and epidemiologic
investigations.  This clustering may be as a result of observations that are repeatedly collected on the
experimental units as in cohort studies, or may be due to sampling blocks of experimental units such
as families, herds, litters ... etc.  The data of interest consist of a binary outcome variable yij.  The
data are collected in clusters or blocks, and i=1,2,...k indexes the clusters, while j=1,2...ni indexes
units within clusters.  A distinguishing feature of such clustered data is that they tend to exhibit
intracluster correlation.  To obtain valid inference, the analysis of clustered data must account for
the effect of this correlation.  The following section illustrates the diversity of the problems in which
intracluster effect may be present through a number of examples.

B.  INTRACLUSTER EFFECTS 

1. Toxicological experiments that are designed to study the teratogenic effects of chemical
compounds on lifeborn fetuses are common situations in which clustering arises.  Here, a
compound is given to pregnant females with a resultant binary outcome, such as fetal death
or presence of abnormality in the individual fetuses.  There is a tendency for fetuses within
the same litter to respond more similarly than fetuses from different litters.  This tendency
has been termed a "litter effect".

2. McDermott et al. (1992)  carried out an investigation designed to describe culling practices
of Ontario Cow-Calf producers.  Since culled cows are subject to the same management
decisions or because they share the same herd risk factors, there is a clustering effect created
when the herd is selected as the experimental unit.  This clustering effect is known as the
"herd effect".

3. Rosenblatt et al. (1985) designed a study to assess the safety of obstetrics in small hospitals.
Data on births and perinatal deaths for the years 1978-1981 were obtained for all public
maternity hospitals in New Zealand.  Hospitals were classified on the basis of neonatal care
facilities and the annual number of deliveries.  Higher percentages of low birth weights were
found to cluster among large hospitals with sophisticated technologies.

4. Studying the familial aggregation of chronic obstructive pulmonary disease was the focus of
investigation by Connolly and Liang (1988).  Here, clusters of families of diseased and non-
diseased individuals formed the sampling units.  For a variety of environmental and genetic
backgrounds it is expected that members of the same family may respond in a like manner
as opposed to members from different families.



5. Correlated binary data arise in longitudinal studies where repeated measures of a binary
outcome are gathered from independent samples of individuals.  There are usually two types
of covariates measured; the first set is measured at the baseline and does not change during
the course of the study.  The second set is measured at each time point.  For longitudinal
studies we may be interested in how an individual's response changes over time, or more
generally in the effect of change in covariates on the binary outcome.

Although different in their specific objectives and their scientific significance, the above
studies share some common characteristics that allowed statisticians to devise a unified approach
in the analysis of clustered correlated binary outcomes.

It should be noted that if there are no covariates measured on the individuals within the
cluster, rather that the covariates are measured only at the cluster level, we can summarize the binary
outcomes for a cluster as a binomial proportion.  In this case, positive correlation between yij and yil

is then manifest as over-dispersion, or extra-binomial variation.  Less often, the observations within
a cluster are negatively correlated and hence there is under-dispersion.  This may happen if for
example the clusters are pens, and animals within a pen are competing for a common food source.
Another example for under-dispersion may occur in family studies where children may be competing
for maternal care.

As we have already seen in the previous section of this chapter, when studying the
association between binary outcomes and sets of covariates it is standard practice to use logistic
regression.  However, if the data are correlated this technique may not be appropriate.  While the
estimates of the regression parameters are essentially correct, as we demonstrate later, their variances
will be wrongly estimated.  There is a vast literature on methods for over-dispersed binomial data
(regression for correlated binomial data).  However, it is only recently that statistical methods have
been developed for situations where covariates are collected at the individual level (regression for
correlated binary outcomes).  In this case the vector of individual binary outcomes constitutes a
vector of multivariate observations gathered on each cluster.

In the next section we investigate the effect of covariates on over-dispersed binomial data,
and on correlated binary data.  Our investigation will include semi-parametric, full likelihood
methods and the recently developed "Generalized Estimating Equations" approach of Liang and
Zeger (1986) and Prentice (1988).  To understand the technique several examples will be presented.

C.  ANALYSIS OF OVERDISPERSED BINOMIAL DATA

1.  Modelling Sources of Variation

Suppose that we have k clusters and the data consists of the observed counts y1, y2,...yk where
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f (Z) ! Z α"1 (1"Z)β"1/B(α,β)

and yij is the binary response from the jth individual within the ith cluster.  Suppose also that
corresponding to the ith cluster, the response probability depends on p explanatory variables x1...xp,
through a linear logistic model.  One way to introduce the variability in the response probability pi

is to assume that they vary about a mean πi.  This means that E(pi)=πi.  Moreover we assume that pi

has a variance, Var (pi) = σi
2πi(1-πi), where σi

2>0 is an unknown scale parameter.

  Since

then from the standard results of conditional probability we have

and

In most applications the dispersion parameter is assumed to be constant σi
2=σ2.

It should be noted that the dispersion factor 1+(ni-1)σ2 can be derived under the assumption that pi

has a beta distribution with parameters α and β.  The pdf of this beta distribution is given by
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i

Var( yij) " " " Cov(yij,yil) . (4.17)

ρ ! Corr (yij,yil ) !
Cov(yij,yil )

Var (yij ) Var ( yil)

The marginal distribution of yi is

The unconditional variance of yi is thus identical to (4.16).

When there is no variability among the response probabilities, that is, when σ2=0, equation
(4.16) reduces to Var (yi) = ni πi(1-πi) which is the variance of a binomially distributed random
variable.  If on the other hand we assume that σ2>0 then Var (yi) will be larger than niπi(1-πi) by an
amount equal to the dispersion factor 1+(ni-1)σ2.

In the special case of binary data with ni=1, i=1,2,...k equation (4.16) becomes 
Var(yi) =πi(1-πi).  Consequently, no information about the dispersion parameter σ2 can be obtained
from the data, and hence we cannot model overdispersion under such circumstances.

2.  Correlated Binary Responses

Since    where yij are Bernoulli random variables, then E (yi) = ni pi   and yi ! "
ni

j!1
yij

Assuming that yij and yil (the jth and lth binary responses within the ith cluster) are correlated
so that
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ni

j"l

ρ pi(1"pi)

! nipi(1"pi)#ni(ni"1)ρ pi(1"pi)

! ni pi(1"pi) 1#(ni"1)ρ
(4.18)

Var(yi) ! φ ni πi (1"πi) (4.19)

then substituting in (4.17) we get

If the correlation ρ is zero, then Var (yi) = ni pi (1-pi) which is the variance under the binomial
assumption.  On the other hand if ρ>0 then the Var (yi) as given in (4.18) will be larger than nipi(1-
pi).  Thus, positive correlation between pairs of binary responses leads to extra variation in the
number of positive responses than would be expected if they were independent.

Although equation (4.16) is essentially the same as (4.18) there is one fundamental
difference.  While the model that produced equation (4.16) is used to model overdispersion (since

), the correlation parameter in (4.18) can be negative.  In fact, since   thisσ2#0 1# (ni"1)ρ >0,
implies .  However, if , then equations (4.16) and (4.18) become identical and"1/ (ni"1) $ρ$1 ρ>0
one cannot differentiate between the effects of correlation between binary responses and the variation
in response probabilities on the variance of  yi .

Alternatively, and perhaps conveniently, we might prefer to assume a constant dispersion
factor relative to the binomial, namely

Overdispersion is then modelled by φ>1.  Certain cluster sampling procedures can give rise to
variances approximately of the form (4.19).  While the use of a non-full likelihood approach will in
general result in loss of efficiency, its loss is known to be modest in many practical situations (Firth,
1987).  We shall elaborate on this remark in a subsequent section.

Example 4.4   Shell’s data

This example will compare the outcomes of adjusting for extra binomial using the methods of Rao
and Scott, and Donner on data taken from Paul (1982).  The data are given in Table 4.9; they
describe experimental data on the number of live foetuses affected by treatment (control, low dose
and medium dose).  The high dose was removed from the original data set.



Table 4.9
Data from Shell Toxicology Laboratory

i) Number of Live Foetuses Affected by Treatment
ii) Total Number of Live Foetuses

(Paul, 1982  Biometrics)

Group

1 i) 1 1 4 0 0 0 0 0 1 0 2 0 5 2 1 2 0 0 1 0 0 0 0 3 2 4 0

CONTROL ii) 12 7 6 6 7 8 10 7 8 6 11 7 8 9 2 7 9 7 11 10 4 8 10 12 8 7 8

2 i) 0 1 1 0 2 0 1 0 1 0 0 3 0 0 1 5 0 0 3

LOW ii) 5 11 7 9 12 8 6 7 6 4 6 9 6 7 5 9 1 6 9

3 i) 2 3 2 1 2 3 0 4 0 0 4 0 0 6 6 5 4 1 0 3 6

MEDIUM ii) 4 4 9 8 9 7 8 9 6 4 6 7 3 13 6 8 11 7 6 10 6

To show how RS adjustment is used to correct for the effect within litter correlation within the
framework of logistic regression, we first derive the inflation factor of each group.  Direct
computations show that:

control: ρ̂1 ! 0.135 , ν1 ! 0.00127, d1 ! 2.34

low ρ̂2 ! 0.135 , ν2 ! 0.0017, d2 ! 1.94

medium ρ̂3 ! 0.344 , ν3 ! 0.0036, d3 ! 2.41

The ANOVA estimator of the intralitter correlation needed to adjust Donner’s adjustment is
.  The following is the SAS program that can be used to analyze the data:ρ̂ ! 0.261

data read;
input group $ y n litter;
if group=’c’ then x = -1 and d = 2.34;
if group=’l’ then x = 0 and d = 1.94;
if group=’m’ then x = 1 and d = 2.41;
/*if group = ’c’ then d = 2.34;  if group = ’m’ then d = 1.94;  if group = ’l’ then d = 2.41;  */
raoscott = 1/d;
donner = 1/(1+(n-1)*0.261);
 cards;
c 1 12 1
c 1 7 2
c 4 6 3
c 0 6 4
….    ;



proc logistic;
model y/n=x;
run;

/*using the weight statement to adjust for correlation using Rao-Scott */
proc logistic;
model y/n=x;
weight raoscott;
run;

/*using the weight statement to adjust for correlation using Donner’s  */
proc logistic;
model y/n=x;
weight donner;
run;

Note that we have coded the dose groups as a continuous variable x=-1 (control), x=0 (low) and x=1
(medium).  The SAS program runs logistic regression under independence and then using the two
weighting adjustments by  Rao and Scott and Donner (weight statements in the program).  The
raoscott  adjustment is the reciprocal of the inflation factor d ; the donner  adjustment depends on
the estimated intralitter correlation.  The results are summarized in Table 4.10.

Table 4.10
Analysis of Shell Toxicology Data

parameter independence Rao-Scott Donner

-1.4012 (0.1165) -1.4247 -1.4058 (0.1934)
β̂o

0.6334 (0.1372) 0.6354 (0.2126) 0.6180 (0.2287)
β̂1

p-value (0.0001) (0.0028) (0.0069)

The bracketed numbers are the standard errors (SE) of the estimated parameter  The p-values are
related to the null hypothesis  .  Note that there are no marked differences among theH0 : β1 ! 0
estimates obtained from the three procedures.  However, the standard errors are inflated when we
adjust for the intralitter overdispersion using either Rao-Scott or Donner’s approach.  

3. Test for Trend in the 2 x I Table

The data in example 4.4 is an illustration of cluster randomization of animals to test for
mortality or morbidity pattern in various groups. For example, suppose that animals have been

randomized into experimental groups, and that the animals in the group are exposed to a dosek i th



level of a chemical compound, with  One is usually interested in testingx
i

x x x1 2 3< < <.. . .
whether the proportion of dead or (affected) subjects increases or decreases monotonically with

dose. A conveniently monotonic function is the logistic function (4.7) with  As weη α βi ix= + .
have indicated, this implies that the log odds (logit) is a linear function of the dose. Thus, if the
doses are equally spaced (e.g. at unit intervals) the logistic model implies that the odds ratios
between adjacent doses are equal. 

The data are usually presented in a table as in Table 4.11.2 × I

Table 4.11
 Data from a Dose-Response Experiment2 I×

    Dose Total

                                             x 1 x 2 x I

Affected                                                  y 1 y 2 y 1 y .

Not affected -        -                          -     -n1 y 1 n 2 y 2 n I y I n . y .

Total                                                   n1 n 2 n I n .

Example 4.5

The data (Table 4.12) summarize the number of fish with liver tumor in three size groups (small,
medium and large). It is believed that size is a function of age, so the purpose of the cross-sectional
study was to test for trend in the percentage of tumours as the fish get older.

Table 4.12  
                     Data on Liver Tumours for Three Groups                   

                                size ( )xi

    small (1)             medium (2)           large (3)

              

           Total

With tumour           2                           7                       60                69

Without
tumour

          28                        43                      15               86

Total           30                        50                      75              155



Under , the Cochran-Armitage test for trend is H 0 0:β =
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The statistic is an approximate chi-square variate with one degree of freedom. For the data inχ
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which is significant at the 0.05 level.

The test statistics ,  are valid when subjects are individually randomized into theχ
h
2 χ

t
2

groups as in the example in Table 4.12. Under cluster randomization (data of example 4.4), the test

for heterogeneity of proportion is done using either  or .  Recall that  is robust againstχ
D
2 ~χ 2 ~χ2

misspecification of the within cluster correlation. We therefore should use a similar test for trendχ2

that accounts for the within cluster correlation. The required test statistic of the hypothesis
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logit pij ! Xijβ # b1 # b2 #...bq . (4.20)

logit(pij) ! Xijβ # Zijbi (4.21)

For the data in Table 4.9 we have

 = 10.82      with 2 degrees of freedomχ
D
2

 = 8.34       with 1 degree of freedomχ
B
2

Recall that the weighted logistic regression under Donner’s adjustment gave  = 0.618 with!β
SE = 0.229. The one degree of freedom chi-square test of the hypothesis , is H 0 0:β =

which is quite close to  .
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D.  FULL LIKELIHOOD MODELS

1.  Random Effects Models

In this section we shall discuss models that can be used in the analysis of grouped binomial
data as well as ungrouped binary data.  In other words, the models we intend to discuss are quite
appropriate for situations in which covariates are measured at both the individual and the cluster
level.  This class of models is know as the "Random Effects Models" (REM).

Suppose that the response probability of the jth individual within the ith cluster depends on the
values of p explanatory variables x1...xp and on q unknown explanatory variables b1...bq so that

The inclusion of such unmeasured explanatory variables b1,b2...bq is another way to account for the
extra variation in the data.   For example bi's may represent the genotype of an individual which
may be impossible or difficult to measure.  Since numerical values cannot be assigned to these
quantities, they are taken as random variables with common mean and common variance !2.  The
model in (4.20) is known as a mixed effects model since it consists of two parts:  the fixed part Xij"
and the random part b1+...+bk.  The mixed effects model can be written in a more compact form
as

where " is a px1 vector of fixed effects, bi is a qx1 vector of random effects, Xij and Zij are covariate
vectors, corresponding to the fixed effects and the random effects respectively.  In most applications
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(4.23)
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r!1
cr f(ur) (4.25)

it is assumed that bi has a multivariate normal distribution with mean 0 and covariance matrix D,
that is, bi ' MVN (0,D).

To estimate the model parameters, the method of maximum likelihood can be used. 
 The likelihood function is given by:

The standard approach to dealing with a likelihood function that contains random variables
is to integrate the likelihood function with respect to the distribution of these variables.  After
integrating out the bi's, the resulting function is called a "marginal likelihood", which depends on
"0, "1,... "p and the parameters of the covariance matrix D.  The maximum likelihood estimates of
these parameters are those values that maximize the marginal likelihood function given as

The two problems associated with the directed maximization of the marginal likelihood  are:
(i) Closed form expression for the integrals (4.24) is not available, so we cannot find exact

maximum likelihood estimates.

(ii) The maximum likelihood estimator of the variance components (the parameters of the matrix
D) does not take into account the loss in the degrees of freedom resulting from estimating
fixed effects.  This means that the ML of the variance components are biased in small
samples.

To find approximation to the ML estimates one has to evaluate the integral in (4.24)
numerically.  The package EGRET evaluates the integral in (4.24) using the Gauss-quadrature
formula for numerical integration, an approach that was followed by Anderson and Aitken (1985).
The Gauss-quadrature approximation of an integral is given as
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where the values of cr and ur can be obtained from Abromowitz and Stegun (1972).  It was reported
by many researchers that m need not exceed 20.  However, in a recent article Crouch and
Spiegelman (1990) showed that m=20 may not be sufficient in some situations.

In most applications we may assume that D=I!b
2 meaning that the random effects are not correlated.

This assumption greatly simplifies the integrand of (4.24) and one can obtain the numerical
integration much faster.  Since, under this assumption, the joint pdf of bi's is given by

then the product

under the transformation,

results in the likelihood equation (4.24) being written as,

This is the required form for the application of the Gauss-quadrature approximation; this is given
as,

The maximization of log L(",D) can be achieved numerically.

Williams (1982) proposed an approximate method to estimate " and !b
2 when covariates are

measured at the cluster level.  More generally, an approximation similar to William's may be
suggested for the case when covariates are measured at the unit level.  Using Taylor's expansion of
E(yij ! bi) about bi=0,
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Since

then

Moreover

When conditional on bi, yij is independent of yik, thus

and
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Therefore, from (4.27) and (4.28)

Cov (yij, yij) =             pij (1-pij) j=k
& pij (1-pij) pik (1-pik) Zij D Zik

T j"k (4.29)

One should note that if Zij=Zik=1, D=I!b
2 and covariates are measured only at the group (cluster)

level, then

has approximate variance given by

This is the same result obtained by Williams (1982).

2.  Bahadur's Model

Bahadur (1961) suggested that the joint probability distribution of the vector of binary
responses yi = (yi1, yi2, ... yini

) can be written as

where

and
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The likelihood function of the sample of k clusters is then given by

Assuming an exchangeable correlation structure (i.e. #ijk=$) the log-likelihood function is given as:

where

Now, suppose also that the logit of pij is linearly related to Xij through the parameter vector "

The derivative of l(",$) with respect to "r and $ is given by

where
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(4.36)

The maximum likelihood estimates can be obtained by solving

One should notice that when $=0, then equation (4.35) reduces to equation (4.10), which is the log-
likelihood equation for estimating "r under independence for clusters of size ni=1.  Consistent
estimates of the variances and covariance of the maximum likelihood estimates ("̂,$̂) are obtained
by inverting the matrix,

where
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and

The cap symbol ( ^ ) indicates that the parameters are to be replaced by their ML estimates.

Remark:

Prentice (1988) introduced Bahadur's representation as a model that is potentially useful for
the analysis of correlated binary data when covariates are measured at both the individual and the
group levels.  One of the advantages of this model is that the estimates of the correlation and
regression parameters are obtained from the direct maximization of the full likelihood function.
Unfortunately, the requirement that the right hand side of (4.30) be nonnegative places severe
restrictions on the range of possible values for the #ijl (see; Prentice, 1988 for more details).  Such
restrictions on expression (4.30) make this model attractive for the analysis of data sets consisting
of clusters of size two.  A full likelihood approach to the estimation of regression effects however,
will probably not be as tractable in situations where clusters are of arbitrary sizes.  The generalized
estimating equation approach which we introduce in the next section is expected to be more
applicable in these situations.

3. Models with More Than One Random Effect : “Hierarchical or Multilevel Modelling of
Binary Data”

Models with random effects are expected to be more efficient, provided that we have correctly
identified the correct distribution for the random component in the model. The random effects model
can be extended to include more than one random component. For example, the health status (presence



or absence of disease) of individuals in the same household, same counties and in the same
geographical area, is often more alike than that of individuals from different households, counties or
regions. This may be due to common socio-economic, environmental and/or behavioral factors. The
ability to quantify sources of unobserved heterogeneity in the health outcome of individuals is
important for several reasons (see Katz et al., 1993). The within household, or counties or regional
clustering of disease, alters the effective sample size needed to provide accurate estimates of disease
prevalence. Estimates of disease prevalence at each level of and organization (household, county,
region, etc.) can provide insight into the dynamics among the risk factors operating at each level. The
ability to obtain separate estimates of the variance component for the random effect at each level of
clustering may guide the policy makers regarding the level of organization to which we should direct
our health management dollars.

Estimating models with random effects for binary data has been the subject of investigation
by many authors as a special case of a more general class known as “Generalized Linear Mixed
Models” (GLMM). Schall (1991) and McGilchrist (1994) demonstrated that the parameters of the
GLMM, with the logit link

( ) ( )η β βp p x z b z b x zbc c= = + + + = +log it 1 1 ...

can be estimated by solving Henderson’s (1975) mixed model equations. This approach avoids
specifying a particular distribution or class of distributions for random effects. Another advantage of
this approach is that we can avoid the computationally intensive numerical multiple integration needed
to construct the marginal likelihood as for single random effect in (4.24). Schall’s (1991) algorithm
is summarized as follows: 
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Schall implemented his algorithm in a SAS macro. Another program that implements Schall’s
algorithm is “GLIMMIX”, which is a SAS macro that can be downloaded. Interested readers may
contact “sasrdw@unx.sas.com”.

Example 4.6 :

The following data are taken from Schall’s paper. Four hundred cells were placed on a dish and three
dishes were irradiated at a time. After the cells were irradiated, the surviving cells were counted. Since
cells would also die naturally, dishes with cells were put in the radiation chamber without being
irradiated, to establish the natural mortality. For the purpose of this example, only these zero-dose data



are analyzed. Twenty-seven dishes on nine time points, or three per time point, were available. The
resulting 27 binomial observations are given in Table 4.13.

Table 4.13 
Cell Irradiation Data

Occasion Dish No. cells surviving 
out of 400 placed

Occasion Dish No. cells surviving 
out of 400 placed

1
1
1
2
2
2
3
3
3
4
4
4
5
5
5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

178
193
217
109
112
115
66
75
80

118
125
137
123
146
170

6
6
6
7
7
7
8
8
8
9
9
9

16
17
18
19
20
21
22
23
24
25
26
27

115
130
133
200
189
173
88
76
90
121
124
136

Schall fitted two models, the first is with one random effect due to time effect (with 9 levels)

,      , ( )log it p bij i= +β0 1 i = 1 9, . . . , j = 1 3, . . . ,

and the second is with two random effects, due to time effect (9 levels) and due to dish effect (27
levels). For the purpose of comparion, we fitted the data with “GLIMMIX”. The SAS program is

Data dish;
input time dish y;

not y = 400-y;
cards;
1   1    178
1   2    193

#
9   27  136
;
proc print data=dish;
run;

Data cell;
set dish;
do i=1 to y;

          



          r=1;
          output;
            end;

do i=1 to noty;
                 r=0;
          output;

end;
run;

% include ‘glmm612.sas’/nosource;
run;
% glimmix (data = cell,
procopt = emthod = reml,
stmts = % str (
class  time  dish;
model r = = / solution;
random   time dish(time);
),
error = binomial,
link = logit
)
run;

To fit the model with only time as a random effect, we remove “dish(time)” from the “random”
statement. The results are summarized in Table  4.14.

Table 4.14 
Fitting Cell Data Using Schall’s Algorithm and GLIMMIX SAS Macro

Model Schall GLIMMIX

one random effect : 

       time    !σ 1
2

       error   !σ 2

 
0.2250

1.8100

 
0.2450

1.9700

two random effects :

       time    !σ 1
2

       dish    !σ 2
2

       error    !σ 2

 
0.2220

0.0100

0.9370

0.2217

0.0099

0.9977

Note that in the model with two random effects,  is very close to 1, and the fitting algorithms!σ 2

produce similar results.



E(yi) ! µ i(β) , Var(yi) ! σ2 , i!1,2,...n (4.37)

gn ! !
n

i!1
bi(β) (yi"µ i(β)) (4.38)

! (yi"µ i)
2

E.  ESTIMATING EQUATIONS APPROACH

In the previous sections we discussed methods for the analysis of correlated binary response
data that require full specifications of the probability distributions of the vector (yi1,...yini)" in order to
obtain fully efficient maximum likelihood estimates of the model parameters.

In this section we discuss a semiparametric approach using the so-called estimating equations.
This approach requires assumptions only about the mean and the variance of the distribution of the
response variables, rather than full specification of the likelihood.  For correlated binary response
variable Liang and Zeger (1986), and Zeger and Liang (1986) suggested an estimating equations
approach that provided estimates of the regression parameters which are consistent and asymptotically
normal even if the covariance structure of the response is misspecified.  Their approach is considered
a generalization of the quasi-likelihood proposed by Weddenburn (1974).

The interested reader will find the article by Godambe and Kale (1991) quite lucid in its
explanation of the theory of estimating functions and their applications in parameter estimation.  Here
we provide a brief summary.

Let us consider the simple case when y1,...,yn are independent random variables such that

We assume that µi is twice differentiable function of β with unique inverse function µi
-1.  Our main 

objective here is to estimate β based on the mean and variance structure given in (4.37).  We define
the linear estimating function,

Where bi(β) are differentiable functions of β.  If the vector β is p-dimensional, the bi(β) is a px1
vector which yields a set of p estimating equations.  The estimate of β is obtained by solving gn=0 for
β.  Since gn(β) are linear in yi with E(gn)=0, the functions gn are called linear unbiased estimating
functions.

As an illustration to this concept, recall that the least square (LS) estimate of the regression
parameters is obtained by minimizing

which when differentiating and equating to zero we get



! (yi"µ i)
(µ i

(β
!0 (4.39)

! (yi"µ i)Xi ! 0

E(yi) ! µ i(β), Var(yi) ! φ V(µ i) (4.40)

! D T
i V "1

i (µ i)(yi"µ i(β)) ! 0 (4.41)

In the special case when µi=Xiβ, we estimate β by solving

The Gauss-Markov (GM) theorem states that the estimates of β obtained by solving (4.39) have
a minimum variance in the class of unbiased estimators.

Wedderburn's (1974) introduction of the concept of quasi-likelihood (QL) allows the
construction of estimating equations when the variance of yi is a known function of the mean.  That
is

where V(µi) is a positive semi-definite matrix whose elements are known functions of the mean µi.

The maximum quasi-likelihood equations used to estimate β are

where    .Di !
(µ i

(β

White (1982) showed that even though the QL does not necessarily correspond to a specific
distribution, maximizing the QL gives estimates of β which are consistent and asymptotically normal.
Moreover, the equations (4.41) are optional in the sense that they maximize the asymptotic efficiency
among all linear unbiased estimating equations.

Within the framework of longitudinal data Liang and Zeger (1986) and Zeger and Liang (1986)
proposed a generalization of the QL in order to account for the correlations between the subunits or
the repeated observations on the ith individual (cluster).  Their approach requires correct specifications
of the mean and postulates a "working" correlation matrix for (yi1,...yini

)" which is not assumed to be
the correct correlation.  This approach is quite important because only in rare situations are we able
to specify the correlation structure.  We now outline two generalized estimating equations approaches;
the first is due to Liang and Zeger (1986) whereby the correlation parameter is considered nuisance;
the other is due to Zhao and Prentice (1990) where additional estimating equations are needed to allow
for the joint estimation of the regression and correlation parameters.



E(yij;xij,β) ! pr[yij!1!Xij,β] ! pij and logit(pij) ! xijβ

!
k

i!1
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i V "1
i (yi"pi) ! 0 (4.42)

pi ! (pi1, pi2,...pin!
)# ,

Di !
"µ i

"β

Bi ! diag (pi1qi1,pi2qi2,...pikqik)
# ,

Vi ! B

1
2

i Ri(α)B

1
2

i ,

V ( β̃ ) ! A "1
11 M A "1

11 (4.43)

Let yi= (yi1, yi2,...,yini
) be a random sample of k clusters of correlated binary responses and let Xi =

(xi1,... xini
) be a matrix of covariates for the ith cluster. 

 Suppose that

A GEE estimator of β based on k clusters is a solution to

where

and Ri(α) is a working correlation matrix for yi with parameter vector α.  Note that the equations
(4.42) are similar to (4.41), the quasi-likelihood equations, except that Vi is a function of β as well
as α.  For a given α the solution  to (4.42) can be obtained by an iteratively reweighed least squaresβ̃
calculation.  The solution to these equations is a consistent estimate of β provided that the
relationship between pi and  β is correctly specified.  The consistency property follows because Di

TVi
-

1 does not depend on the yi's so, equation (4.42) coverges to zero and has consistent roots so long as
E(yi-pi) = 0.  If an "k consistent estimate of α is available,  are asymptotically normal, even if theβ̃
correlation structure is misspecified. Correct specification of the correlation gives more efficient
estimates of β.  Liang and Zeger (1986) proposed a "robust" estimate of the variance of  asβ̃

where



A11 ! !
k

i!1

#D
T

i
#V
"1

i
#D i

M ! !
k

i!1

#D
T

i
#V
"1

i
#

Cov (yi)
#V
"1

i
#D i

˜Cov (yi ) ! (yi" p̃ i ) (yi" p̃ i )# .

r̂ij !
yij"p̂ij

p̂ij q̂ij

.

α̂ ! !
k

i!1
!
n!

j!1
!
n!"1

l!j$1
r̂ij r̂il / !

k

i!1

ni

2
"p (4.44)

Uijl !
(yij"pij)(yil"pil)

(pijpil qijqil)
1/2 (4.45)

(a tilde (~) denotes evaluation at  and α̃ ( )) andβ̃ β̃

As we have previously mentioned, in order to solve the equation (4.42) for β, we need a
consistent estimate of the correlation parameters α.  Liang and Zeger (1986) proposed a simple
estimator for α based on Pearson's residuals

For example under exchangeable (common) correlation structure, that is, corr (yij, yil)=α for all i,j,l,
an estimate of α is

where the p in the denominator of (4.44) is the number of regression parameters.

A SAS macro for the analysis of correlated binary data was provided by Karim and Zeger
(1988).  More description will be given during the discussion of a practical example at the end of
this chapter.

Prentice (1988) proposed an extension of the GEE approach to allow joint estimation of the
regression parameters and the pairwise correlations.  To be more specific, a GEE estimator of the
correlation parameter α may be derived noting that the sample correlation

has
E (Uijl ) ! Corr (yij ,yil ) ! δijl (α )

.Var (Uijl ) ! Wijl ! 1$ (1"2pij ) (1"2pjl ) (pij pil qij qil)
1/2 δijl " δ

2
ijl



!
k

i!1
D T

i V "1
i (yi"pi) ! 0

!
k

i!1
E T

i W "1
i (Ui"δi) ! 0

(4.46)
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2
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Hence a generalized estimating equations estimator ( ,α̃) for β and α may be defined as a solutionβ̃
to

where

δi = (δi12,...δi1ni
, δi23,...,...,δini-1,ni

)$

Wi = diag (Wi12,...Wi1ni
, Wi23,...,...,Wini-1,ni

)$

and

The above definition of W as proposed by Prentice (1988) uses an    -dimensional matrix
ni (ni " 1)

2as a working correlation matrix for     

Ui = (Ui12,....Ui1ni
,Ui23,....,....,Uini-1ni

)$

Note that the first of equation (4.46) is the same as equation (4.42).  Note also that if δijl=α
for all i=1,2,...k, j<l%ni, and Wi is the identity matrix then the second set of estimating equations in
4.46 reduces to 

For practical purposes we take Uijl=r̂ij r̂il and hence the estimate of α given in (4.47) differs
from (4.44) by a factor of 
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The divisor in  (4.44), when used instead of that in (4.47), allows for the adjustment for the loss of
degrees of freedom due to the estimation of β.  Thus the estimate from (4.44) will be less biased than
that from (4.47).  Under mild regularity conditions, Prentice (1988) showed that the asymptotic
distribution of ( ,α̂) is multivariate normal with mean zero and covariance matrix consistentlyβ̂
estimated by

where

A11 is defined in (4.43)
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Also,

where

Prentice argued that careful modelling of the correlations would increase the efficiency of

the GEE estimator of  β.  In such a case we may replace Cõv(yi) in M by  and hence obtain
~
Vi

as the covariance matrix of .  This estimate of the covariance matrix is called "naive" estimateβ̃
since some loss of robustness is expected under a misspecified correlation form.

Example 4.7

Mastitis is one of the costliest diseases of the dairy industry. In a 1976 survey, the annual
monetary loss resulting from bovine mastitis in the U.S.A. was estimated to be $1.3 billion.
Approximately 69% of the loss ($81.32 per cow) was attributed to reduced milk production resulting
from subclinical mastitis; 18% ($20.99 per cow) as a result of money spent on treatment of clinical
cases; and the remaining 13% represented the cost of replacing cattle.  This is strong economic
evidence that the disease must be monitored and controlled.  The occurrence of subclinical mastitis
in herds or individual cows can be monitored by determining the somatic cell count of milk samples.
In a cross-sectional study that involved 122 cows from 6 herds, the mastitis status of a cow for each
of its four teats was determined by bacterial culturing of the milk samples.  The somatic cell counts
were also recorded.  Since the age of the cow is believed to be a confounding factor it was included
in the logistic regression model.  Note that the somatic cell counts are measured at the subunit (teat)
level, while age is measured at the cluster (cow) level. Let yij = 1 if the jth teat of the ith cow is tested
positive to mastitis and zero otherwise (i=1,2,...122; j=1,2,3,4) clearly yij and yil (j&l) are correlated.
To account for such correlation we assume an exchangeable (common) correlation structure.  That
is



logit (pij) ! β%0 $ β%1 (LSCC)ij $ β
%

2 (Age)i ,

logit (pij) ! β0$ β1A1$β2A2$ β3L1$ β4L2 .

       Corr (yij, yil) = ρ          for all i=1,2,...n

j&l = 1,2,3,4

The scientific question we are posing is whether the somatic cell count is related to the
disease status (when age is controlled for).  The postulated model is

where LSCC is the natural logarithm of somatic cell count and pij=pr[yij=1!LSCC,Age].  To account
for the higher order effects of LSCC and age, we decided to use the following dummy variable
structure,

A1 1 if age ' 3 years
# 0 if age < 3 years

A2 1 if age ' 9 years
# 0 if age < 9 years

L1 1 if LSCC ' 4.75
# 0 if LSCC < 4.75

L2 1 if LSCC ' 5.75
# 0 if LSCC < 5.75

The data (see Table 4.15) were analyzed using the ordinary logistic regression (assuming
independence of responses), using the GEE approach of Liang and Zeger (1986) and the maximum
likelihood method under Bahadur's representation.  The results are summarized in Table 4.15.  The
logistic regression model is



Table 4.15  
Analysis of the Mastitis Data Provided by Dr. Y. Schukken

Coefficient Logistic regression GEE 1 MLE
(Bahadur's model)

!0

!1

!2

!3

!4

-.876
(.533)
-.804
(.449)
.605

(.412)
-1.547
(.560)
.587

(.426)

-.780
n(.588),r(.486)

-.849
n(.543),r(.451)

.651
n(.497),r(.426)

-1.638
n(.578),r(.511)

.597
n(.459),r(.327)

-.824
(.539)
-.853
(.472)
.661

(.430)
-1.583
(.556)
.560

(.436)

"̂ 0 0.137
(0.122)

.050
(.039)

The GEE provides two estimates of the standard errors; the first is based on the "robust"
formula of the variance covariance matrix (4.43) which we denote by r(.); the other is based on
the naive formula given in (4.49) which we denote by n(.).  It appears that young age has a sparing
effect on the disease prevalence, while older cows are more likely to get the disease.  The same
argument holds for the somatic cell counts; that is teats with higher somatic cell counts are likely
to be tested positive and vice versa.

The three approaches tend to produce very similar estimates for the parameters and very
little differences among the estimated standard error.  It has been confirmed through extensive
simulations (McDonald 1993, Lipsitz et al. 1990) that the three methods may produce similar
results when the cluster sizes are equal and small, and when the estimated pij are far from their
boundary values.  Since the mastitis data have clusters of size ni=4 for all (i=1,2,...122) which
is relatively small, this may explain the similarity of the estimates under the three models.

Example 4.8

For the shell toxicology data of example 4.4, we illustrate the use of the GEE.  The SAS program
given below follows what has already been given in example 4.4.

data shell;
  set read;
inter = 1;



B̂o ! "1.4012 , n (0.180) , r (0.173)

B̂1 ! 0.6334 , n (0.212) , r (0.217)

logit pr(X1!1!y,X2) ! β0 $ β1y $ β2X2 .

%include ‘a:\gee1.mac’;
%GEE  (data = shell,

yvar = y,
xvar=inter x,
id = litter,
link = 3,
vari = 3,
n = n,
corr = 4);

run;

The results are 

Note that the robust standard errors are quite close to those resulting from the Rao-Scott
adjustment.  

VII.  LOGISTIC REGRESSION FOR CASE-CONTROL STUDIES

A.  COHORT VERSUS CASE-CONTROL MODELS

Although initial applications of the logistic regression model (4.6) were specific to cohort
studies this model can be applied to the analysis of data from case-control studies.  The
specification of the logistic model for case-control studies in which the presence or absence of
exposure is taken to be the dependent variable was given by Prentice (1976).  His approach
assumes that we are interested in the effect of one factor.  Suppose that the exposure factor which
is the focus of interest is dichotomous, say x1, where x1=1 (exposed) and x1=0 (unexposed) and
that x2 is another potential risk factor or a confounder.  Hence, the prospective logistic model
corresponding to the retrospective study is such that

The relative odds of exposure among diseased as compared to the nondiseased may be given as



OR ! e
β#$β$(1)$β%X% / e

β#$β$(0)$β%X%

! e
β$

Pr[y!1!X, sampled] !
Pr[y!1,S!X]

p(S)

!
f1px

f1px$f0qx

Pr[y!0!X, sampled] !
f0qx

f1px$f0qx

which is mathematically equivalent to the relative odds of disease among the exposed subjects as
compared to the unexposed, as we have already shown in Chapter 3.

The rationale behind this argument was provided by Mantel (1973) as follows: let ƒ1 denote
the sampling fraction of cases; that is if n1 cases were drawn out of a population of  N1, then ƒ1

= n1/N1.  Similarly we define ƒ0 as the sampling fraction of control.  It is assumed that neither ƒ1

nor ƒ0 depends on the covariate vector X.  Now consider the following 2x2 table (4.16).

Table 4.16
Description of Sampling and Disease Occurrence in a 2x2 Layout

Case
y=1

Control
y=0

Total

Sampled (S) ƒ1px ƒ0qx ƒ1px+ƒ0qx=p(S)

Not Sampled (S̄) (1-ƒ1)px (1-ƒ0)qx (1-ƒ1)px+(1-ƒ0)qx=p(S̄)

px qx=1-px 1

where px = pr [y=1 ! X]

In a case-control study we would like to model   logit [pr(y=1 ! x, sampled)] as a linear function
of the covariate vector X.

Since

and

then



logit[Pr(y!1!X, sampled)] ! log
f1

f0

px

qx

! log
f1

f0

$ logit Pr[y!1!X]

! log
f1

f0

$ β0$β1x1$...βpxk

! β%0 $ !
k

j!1
βjxj

(4.50)

(4.51)

β%0 ! log
f1

f0

$ β0

where

As can be seen from equation (4.51), the logistic model for the case-control study has the
same form as that of the logistic model for cohort study (4.6).  This means that the regression
parameters, which measure the joint effects of groups of covariates on the risk of disease, can be
estimated from the case-control study.  The following remarks are emphasized:

i) If !0
*, !1,...!k are estimated from a case-control study, and since !0

* depends on
the ratio ƒ1/ƒ0, the risk of disease px (which depends on !0) cannot be estimated
unless ƒ1/ƒ0 is known.  The situations in which ƒ1/ƒ0 is known are quite uncommon.

ii) For a given x, equation (4.50) represents the log-odds of disease in the sample of
cases and controls which is related to the log-odds of disease in the target
population by the factor (log ƒ1/ƒ0).  However, if we estimate the log-odds of
disease in the sample of cases for a subject with covariate pattern X*, relative to the

sampled control whose covariate  pattern is , then!X
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This means that the estimate of !0
* is irrelevant to the estimation of the odds ratio.

B.  MATCHED ANALYSIS

We saw how data from a case-control study can be analyzed using the logistic regression
model to measure the effect of a group of covariates on the risk of disease, after adjusting for
potential confounders.  We have also indicated (Chapter 3) that the primary objective of matching
is the elimination of the biased comparison between cases and controls that results when
confounding factors are not properly accounted for.  A design which enables us to achieve this
control over such factors is the "matched case-control study".  Unless the logistic regression model
properly accounts for the matching used in the selection of cases and controls, the estimated odds
ratios can be biased.  Thus, matching is only the first step in controlling for confounding.  To
analyze matched case-control study data using logistic regression we will discuss two situations.
The first is called 1:1 matching (which means that each case is matched with one control), and the
other is 1:M matching (which means that each case is matched with M controls).  Before we show
how the data analysis is performed we describe the general set-up of the likelihood function.

Suppose that controls are matched to cases on the basis of a set of variables x1, x2,...xk.
These variables may represent risk factors and those potential confounders that have not been used
in the matching procedure.  Moreover, the risk of disease for any subject may depend on the
'matching variable' that defines a 'matched set' to which an individual belongs.  The values of
these matching variables will generally differ between each of n matched sets of individuals.

Let pj (xij) denote the probability that the ith person in the jth matched set is a case (or
diseased), i=0,1,...M, j=1,2,...n.  The vector of explanatory variables for the case is x0j, while
the vector xij (i=1,2,...M) denotes the explanatory variables for the Mth control in the jth matched
set.  The disease risk pj (xij) will be modelled as



pj(xij) !
e
αj"!

k

l!1
βlXlij

1"e
αj"!
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l!1
βlXlij

(4.53)

pj(Xij)

1#pj(Xij)
! exp αj " !

k

l!1
βl xlij . (4.54)

pj(X1j )

1#pj(X1j )

pj(X2j )

1#pj(X2j )

! exp β1(X11j#X12j) " . . ." βk(Xk1j#Xk2j) ,

(4.55)

Where xlij is the value of the lth explanatory variable l=1,2,...k for the ith individual,
i=0,1,...M in the jth matched set.  The term !j represents the effects of a particular configuration
of matching variables for the jth  matched set on the risk of disease.  It can be seen from (4.53) that
the relationship between each explanatory variable xl and the risk of disease is the same for all
matched sets.

From (4.53) the odds of the disease is given by

In particular, for two individuals from the same matched set, the odds of disease for a subject with
explanatory variable X1j relative to one with explanatory variable X2j is

which is independent of !j.  This means that the odds of disease for two matched individuals with
different explanatory variables does not depend on the actual values of the matching variables.

C.  CONDITIONAL LIKELIHOOD

The likelihood function based on matched case-control studies is known as "conditional
likelihood".  Here we construct the likelihood function under the 1:M matched case-control study,
where the jth matched set contains M controls (j=1,2,...n). Let X0j denote the vector of the
explanatory variables for the case and Xij,...XMj denote the vector of explanatory variables for the
M controls in the jth matched set.  Following Breslow et al. (1978) let p(Xij ! y=1) be the
probability that a diseased individual in the matched set has explanatory variables Xij for
i=0,1,...M and j=1,2,...n; let p (Xij ! y=0) be the probability of a disease-free individual with
explanatory variable Xij.  Therefore, the joint probability that X0j corresponds to the case (y=1)
and Xij (i"1) corresponds to the control (y=0) is



p(X0j!y!1) %M
i!1

p(Xij!y!0) (4.56)

p(X0j!y!1) !
p(y!1!X0j ) p(X0j )

p(y!1)
(4.57)

p(Xij!y!0) !
p(y!0!Xij ) p(Xij )

p(y!0)
(4.58)

p(X0j!y!1) %M
i!1

p(Xij!y!0)$p(X1j!y!1) %M
i&1

p(Xij!y!0)

$ ... $ p(XMj!y!1) %M
i&M

p(Xij!y!0)

! !
M

i!0

p(Xij!y!1) %M
r&i

p(Xrj!y!0)

(4.59)

Fj(Xj) !

p(X0j!y!1) %M
i!1

p(Xij!y!0)

!
M

i!0
p(Xij!y!1) %M

r&i
p(Xrj!y!0)

(4.60)

Note that from Bayes theorem we can write

and similarly

Now, the probability that one of the M+1 subjects in the jth matched set is the case and the
remainder are controls, is the sum of the probability that the subject with explanatory variable X0j

is diseased and the rest are disease free, plus the probability that the subject with explanatory
variable Xij is diseased and the rest are disease free and so on.  That is

Therefore, the conditional probability that the case in the jth matched set has explanatory variable
X0j, conditional on X0j, Xij,...XMj being the explanatory variables for the subjects in that matched
set is

Substituting (4.57) and (4.58) into (4.60) we get
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(4.61)

p(y!1!Xij)

p(y!0!Xij)
! exp αj$β1x1ij$β2x2ij$ . . .$βkxkij

Fj(Xj) ! 1$!
M

i!1
exp β1 (X1ij"X10j )$ . . .$βk(Xkij"Xk0j )

Hence

Similar to equation (4.53), assume that 

which when substituted in (4.61) results in

Hence, the conditional likelihood function of a sample of n matched sets is given by
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βrZrj
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(4.63)

D.  FITTING MATCHED CASE-CONTROL STUDY DATA IN SAS

The main purpose of this section is to discuss, through an example, how the parameters
of the conditional likelihood (4.62) are estimated.  For the matched pair design, M=1, the
conditional likelihood (4.62) reduces to

where Zrj = Xr0j - Xr1j .

This likelihood (4.63) is identical to the likelihood function of a logistic regression for n
binary observations yi, such that yi=1 for i=1,2,...n.  Note that the explanatory variables here
are Zij,...Zkj, and there is no intercept.  Therefore, using SAS, PROC LOGISTIC fits the 1:1
matched data by following these steps:

(i) the number of matched sets n is the number of observations

(ii) the response variable yj=1 for all j=1,2,...n

(iii) the explanatory variable Zrj (r=1,2...k and j=1,2,...n) is the difference between
the value of the rth explanatory variable for a control and the rth explanatory
variable for a case, within the same matched set. Note that if qualitative or factor
variables are used, the explanatory variables in (4.63) will correspond to dummy
variables. Consequently, variables are the differences between the dummy variables
of the case and control in the matched pair. Note also that the interaction terms can
be included in the model by representing them as products of the corresponding
main effects.  The differences between these products for the case and control in
a matched pair are included in the model.



Example 4.9  "Hypothetical Data"

In an investigation aimed at assessing the relationship between somatic cell counts (SCC)
and the occurrence of mastitis, a 1:1 matched case-control study was postulated.  A "case" cow
was matched with a control cow from the same farm based on:  breed, number of lactations and
age as a possible confounder.  The data summary is given in Table 4.17.

Table 4.17
"Hypothetical Mastitis Data"

Case

High Low

Control High 5 110
age < 4

Low 216 40

Case

High Low

Control High 5 212
age ' 4

Low 308 21

In this simple example we have one risk factor, namely the SCC which was dichotomised
as "high" and "low".  Since it is believed that the incidence rate of the disease in younger cows
is different from older cows, the matching variable age was divided into two distinct strata, the
first for cows whose age is less than 4 years, and the second for those that are at least 4 years old.

As already mentioned, we cannot investigate the association between the disease risk and
the age variable since age is a matching variable.  However we shall investigate the possible
interaction between the SCC and age.  Since the risk factor and the confounder are factor variables
and each factor has two levels, we define a single dummy variable for each factor.  Let X1 be the
indicator variable for SCC and X2 for age, where

X1 1 if the cow has high SCC
# 0 if the cow has low SCC

X2 1 if the cow's age is < 4
# 0 if the cow's age is ' 4

we also define a third dummy variable X3, obtained by multiplying X1 and X2 for each individual
animal in the study.  With this coding the data is structured as in Table 4.18.



Table 4.18
Coded Variable for the Data in Table 4.12

Status X1(SCC) X2(age) X3=X1X2 Number of matched pairs

Case
Control

Case
Control

Case
Control

Case
Control

Case
Control

Case
Control

Case
Control

Case
Control

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0
0 $
0
0 $
0
0 $
0
0 $
1
1 $
1
0 $
0
1 $
0
0 $

5

216

110

40

5

308

212

21

The input variables, Z1, Z2 and Z3 are created using variables as set up in Table 4.19, where,

Z1=X1(case) - X1 (control)
Z2=X2(case) - X2 (control)
Z3=X3(case) - X3(control).

Table 4.19
Variables for the Logistic Regression Model

y Z1 Z2 Z3

1
1
1
1
1
1
1
1

0
1
-1
0
0
1
-1
0

0
0
0
0
0
0
0
0

0
0
0
0
0
1
-1
0



The following SAS statements describe how the logistic regression model can be fitted.

data  match;
input  y  Z1  Z2  Z3  count;
do  i=1  to count;
output; end;
cards;

1
1
1
1
1
1
1
1

0
1
-1
0
0
1
-1
0

0
0
0
0
0
0
0
0

0
0
0
0
0
1
-1
0

5
216
110
40
5

308
212
21

proc logistic data = match;
model y = Z1 Z3 / noint covb;
run;

Note that the response variable yi=1 for all i=1,2,...8.  In the model statement of the SAS
program we did not include the matching variable Z2 since it is not possible to investigate its
association with the disease status.  Moreover the option noint is specified, so that the logistic
regression is fitted without the intercept parameter.  The SAS output are:

 = 0.675 (.117)    P-value ( .0001β̂1
 =-0.301 (.147)    P-value ( .041 β̂2

The bracketed numbers are the estimated standard error of the corresponding regression parameter
estimate.  The results indicate that there is a significant association between SCC ( ) and theβ̂1
disease.  There is also significant interaction between the SCC ( )  and age on the risk ofβ̂2
mastitis.

Remark

For 1:M matching, where each case is matched with an arbitrary number of controls, the PROC
PHREG in SAS can be used to fit the model (SAS Technical Report P229, Release 6.07).



Chapter 5

THE ANALYSIS OF TIME SERIES

I.  INTRODUCTION

A time series is an ordered sequence of observations.  Although the ordering is usually
through time, particularly in terms of some equally spaced intervals, the ordering may also be taken
through other dimensions, such as space.  Time series occur in a wide variety of fields.  In
economics, interest may be focused on the weekly fluctuations in the stock prices and their
relationships to unemployment figures.  Agricultural time series analyses and forecasting could be
applied to annual crop yields or the prices of produce with regard to their seasonal variations.
Environmental changes over time, such as levels of air and water pollution measured at different
places, can be correlated with certain health indicators.  The number of influenza outbreaks in
successive weeks during the winter season could be approached as a time series by an
epidemiologist.  In medicine, systolic and diastolic blood pressures followed over time for a group
of patients could be useful for assessing the effectiveness of a drug used in treating hypertension.
Geophysical time series (Shumway, 1982) are quite important for predicting earthquakes.  From
these examples one can see the diversity of fields in which time series can be applied.  There are,
however, some common objectives which must be achieved in collected time series data:

a) To describe the behavior of the series in a concise way.  This is done by first plotting the data
and obtaining simple descriptive measures of the main properties of the series.  This may not
be useful for all time series because there are series that require more sophisticated
techniques, and thus more complex models need to be constructed.

b) To explain the behavior of the series in terms of several variables.  For example, when
observations are taken on more than one variable, it may be feasible to use the variation in
one time series to explain the variation in another series.

c) We may want to predict (forecast) the future values of the series.  This is an important task
for the analysis of economic and agricultural time series.  It is desirable particularly if there
is sufficient evidence in the system to ensure that future behavior will be similar to the past.
Therefore our ability to understand the behavior of the series may provide us with more
insight into causal factors and help us make projections into the future.

d) Controlling the series by generating warning signals of future fluctuations.  For example,
if we are measuring the quality of production process, our aim may be to keep the process
under control.  Statistical quality control provides us with the tools to achieve such an
objective by constructing "control charts".  More advanced strategies for control are outlined
in Box and Jenkins (1970).



The following example (5.1) gives the data (Table 5.1) and time plot (Figure 5.1) for an
epidemiological time series showing the average somatic cell count (SCC) by month over a number
of years.

Example 5.1

In plotting the SCC data in Table 5.1 we see large fluctuations in both the mean and the variance
over time (Figure 5.1).

Table 5.1
Average SCC per Farm in 1000s of Cells per ml of Milk

1984-1990

1984 1985 1986 1987 1988 1989 1990

Jan
Feb
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec

317
292
283
286
314
301
317
344
367
351
321
398

345
310
307
310
340
325
340
370
400
380
345
330

370
360
300
310
389
320
340
400
395
350
400
350

350
420
360
340
335
350
360
395
380
375
402
460

400
385
350
325
345
350
375
410
360
375
370
395

370
335
305
325
310
315
350
370
350
345
355
340

340
345
325
330
360
330
345
350
350
345
325
280

Figure 5.1 A time of average somatic cell counts per month for 84 months.
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A.  SIMPLE DESCRIPTIVE METHODS

In this section we describe some of the simple techniques which will detect the main
characteristics of a time series.  From a statistical point of view, the description of a time series is
accomplished by a time plot; that is, plotting the observations against time and formulating a
mathematical model to characterize the behavior of the series.  This models the mechanism which
governs the variability of the observations over time.  Plotting the data could reveal certain features
such as trend, seasonality, discontinuities and outliers.  The term 'trend' usually means the upward
or downward movement over a period of time, thus reflecting the long-run growth or decline in the
time series.

In addition to the effect of trend, most economic time series include seasonal variation.  To
include both the seasonal variation and the trend effect there are two types of models that are
frequently used.  The first is the Additive Seasonal Variation Model (ASVM) and the second is the
Multiplicative Seasonal Variation Model (MSVM).  If a time series displays additive seasonal
variation, the magnitude of the seasonal swing is independent of the mean.  On the other hand, in
a multiplicative seasonal variation series we see that the seasonal swing is proportional to the mean.
The two models are represented by the following equations

yt = Tt + St + εy (ASVM)
yt = TtSt + εy (MSVM)

where yt = the observed value at time t
Tt = the mean trend factor at time t
St = seasonal effect at time t
εt = the irregular variation of the time series at time t

The two models are illustrated in Figures 5.2a and 5.2b

Figure 5.2a Additive seasonal variation model.     Figure 5.2b Multiplicative seasonal variation model.



yt ! (Tt)(St) " εt (5.1)

yt ! (Tt)(St)(Ct)(It) (5.2)

Note that the  MSVM has an additive irregular variation term.  If such a term is multiplicative,
that is if yt = Tt St !t, then this model can be transformed to ASVM by taking the logarithm of
both sides.

1.  Multiplicative Seasonal Variation Model

In this section we will be concerned with simple methods of decomposing MSVM into its
trend, seasonal and random components.  The model is somewhat different from the previous
model,

and is usually written as

where yt, Tt and St are as previously defined.  Here, Ct represents the cyclical effect on the series
at time t, and It is the irregular variation.

We will explain how to decompose the multiplicative model in the following example.

Example 5.2

The following data represent the number of cases with bovine respiratory disease in particular
feedlots reported in eastern Alberta counties over a period of 4 years in each of the 4 quarters.

Quarter Year 1 Year 2 Year 3 Year 4

1
2
3
4

21
14
5
8

25
16
7
9

25
18
9
13

30
20
10
15

The first step in the analysis of this time series is the estimation of seasonal factors for each
quarter.  To do this one has to calculate the moving average (MA), in order to remove the seasonal
variation from the series.  A moving average is calculated by adding the observations for a number
of periods in the series and dividing the sum by the number of periods.  In the example above we
have a four-period series since we have quarterly data.  If the time series consists of data collected
every 4 months, we have a three-period time series, and hence a three period moving average
should be used.  In the above example the average for the four observations in the first year is



21"14"5"8
4

! 12

14"5"8"25
4

! 13

5"8"25"16
4

! 13.5

yt ! (Tt)(St)(Ct)(It)

(St)(It) !
yt

(Tt)(Ct)
!

column (3)
column (6)

The second average is obtained by eliminating the first observation in year 1 from the average and
including the first observation in year 2 in the new average.  Hence

The third average is obtained by dropping the second observation in year 1 and adding the second
observation in year 2.  This gives

Continuing in this manner, these moving averages are as found in Table 5.2a.  Note that, since
the first average is the average of the observations in the 4 quarters, it corresponds to a midpoint
between the second and third quarter.

To obtain the average corresponding to one of the time periods in the original time series,
we calculate a centered moving average.  This is obtained by computing a two-period moving
average of the moving averages previously calculated (Table 5.2a).

Note that since the moving average is computed using exactly one observation from each season,
the seasonal variation has been removed from the data.  It is also hoped that this averaging process
has removed the irregular variation It.  This means that the centered moving averages in column
6 in Table 5.1a represent the trend (Tt) and cycle (Ct).  Now, since

then the entries in column 7 of Table 5.2a are computed as:

The seasonal coefficients (StIt) are summarized in Table (5.2b).



Table 5.2a
Moving Average of the Time Series of Example 5.2

1 2 3 4 5 6 7

Year Quarter yt Moving
Total

Moving
Average

Centered Moving
Average

StIt 

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

21

14

5

8

25

16

7

9

25

18

9

13

30

20

10

15

48

52

54

56

57

57

59

61

65

70

72

73

75

12

13

13.5

14

14.25

14.25

14.75

15.25

16.25

17.5

18

18.25

18.75

12.5

13.25

13.75

14.125

14.25

14.5

15.0

15.75

16.875

17.75

18.125

18.5

.4

.604

1.818

1.133

.491

.621

1.667

1.143

.533

.732

1.655

1.081



Ŝ1 !
1.818"1.667"1.655

3
! 1.713 .

Ŝ2 ! 1.119, Ŝ3 ! .475, and Ŝ4 ! .652

dt ! deseasonalized series !
yt

St

Table 5.2b
Seasonal Coefficients for Each Quarter by Year

Quarter (1) Quarter (2) Quarter (3) Quarter (4)

1.818
1.667
1.655

1.133
1.143
1.081

.400

.491

.533

.604

.621

.732

The seasonal effects for each quarter can be computed by summing and dividing by the
number of coefficients.  Thus, for quarter 1,

Similarly

are the estimated seasonal effects for quarters 2, 3 and 4.

Once the estimates of the seasonal factors have been calculated we may obtain an estimate of the
trend Tt of the time series.  This is done by first estimating the deseasonalized observations. 

The deseasonalized observations are obtained by dividing yt by St.  That is,

These values should be close to the trend value Tt.  To model the trend effect, as a first step one
should plot dt against the observation number t.  If the plot is linear it is reasonable to assume that

Tt = "0+"1t ;

on the other hand if the plot shows a quadratic relationship then we may assume that

Tt = "0+"1t+"2t
2

and so on.  Table 5.2c gives the deseasonalized observations; Figure 5.3 is a scatter plot of these
observations against time.



10 

12 

14 

16 

18 

20 

22 

24 

dt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
time (t)

d̂t ! T̂t ! 10.05"0.685t. , t!1,2,...16

Table 5.2c
Deseasonalized Observations

Year Quarter t yt Ŝt dt=yt/St

1

2

3

4

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

21
14
5
8
25
26
7
9
25
18
6
13
30
20
10
15

1.713
1.119
.475
.652
1.713
1.119
.475
.652
1.713
1.119
.475
.652
1.713
1.119
.475
.652

12.26
12.51
10.53
12.27
14.59
23.24
14.74
13.80
14.59
16.09
12.63
19.94
17.51
17.87
21.05
23.01

Figure 5.3. Deseasonalized observations over time; BRD data.

The estimated trend is found to be:



yt ! (Tt)(St)(Ct)(It),

(Ct)(It) !
yt

(T̂t)(Ŝt)
.

To compute the cyclical effect, recall that

hence

We summarize these computations in Table 5.2d   
           

          Table 5.2d
Computations of Cyclical Effect and Irregular Variations

(1) (2) (3) (4) (5) (6) (7) (8)

Year Quarter t yt T̂t=10.05+.68
5t

Ŝt (T̂t)(Ŝt) (Ct)(It)

1

2

3

4

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

21
14
5
8
25
26
7
9
25
18
6
13
30
20
10
15

10.74
11.42
12.11
12.79
13.48
14.16
14.85
15.53
16.22
16.9
17.59
18.27
18.96
19.64
20.33
21.01

1.713
1.119
.475
.652
1.713
1.119
.475
.652
1.713
1.119
.475
.652
1.713
1.119
.475
.652

18.39
12.78
5.75
8.34
23.08
15.85
7.05
10.13
27.78
18.91
8.35
11.91
32.47
21.98
9.65
13.70

1.14
1.10
0.87
0.96
1.08
1.64
0.99
0.89
0.90
0.95
0.72
1.09
0.92
0.91
1.04
1.10

CtIt !
column 4
column 7

Once (Ct)(It) has been obtained, a three quarter moving average may remove the effect of irregular
variation.  The results are summarized in Table 5.2e.



Table 5.2e
Estimated Cyclical Effect

Year Quarter t      (Ct)(It) 3-period moving
average Ĉt

1

2

3

4

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1.14
1.10
0.87
0.96
1.08
1.64
0.99
0.89
0.90
0.95
0.72
1.09
0.92
0.91
1.04
1.10

1.037
0.977
0.970
1.230
1.24
1.173
0.927
0.913
0.857
0.920
0.910
0.973
0.957
1.017

CtIt !
column 4
column 7

The previous example shows how a time series can be decomposed into its components.
Most econometricians use the trend and seasonal effect in their forecast of time series, ignoring
the cyclical and irregular variations.  Clearly irregular ups and downs cannot be predicted,
however, cyclical variation can be forecasted and is treated in the same manner as the seasonal
effects shown in Table 5.2b.  In our example, the average effect of the cycle at each period is as
found in Table 5.2f.

 Table 5.2f
Cycle's Effect for Different Periods

quarter (1) quarter (2) quarter (3) quarter (4)

1.23
0.92
0.97

1.04
1.24
0.86
0.96

0.98
1.17
0.92
1.02

0.97
0.93
0.91



ŷt ! (T̂t)(Ŝt) .

yt ! Tt"St"It

It should be noted that the estimated cycles are useful if a well-defined repeating cycle of
reasonable fixed duration can be recognized.  In many 'real life' data this may not be possible.
In order to obtain reliable estimates of the cyclical effect, data with several cycles should be
available.  Since cyclical fluctuations have a duration of 2 to 7 years or more, more than 25 years
of data may be needed to estimate the cycle effect and make accurate forecasts.  For these reasons,
the cyclical variation in time series cannot be accurately predicted.  In such situations, forecasts

are based on the trend and seasonal factors only.  Having obtained t and t, the forecast of a!T !S
future observation is given by

2. Additive Seasonal Variation Model

For this type of model we shall assume, for simplicity, that the series is composed of trend,
seasonal effect, and error component, so that

As before the trend effect can be modelled either linearly: Tt = "0+"1t, quadratically: Tt =
"0+"1t+"2t

2, or exponentially: Tt = "0+"1
t (which can be linearized through the logarithmic

transformation).

The seasonal pattern may be modelled by using dummy variables.  Let L denote the
number of periods or seasons (quarter, month,...etc.) in the year.  St can be modelled as follows

St = #1 X1,t + #2 X2,t + ... #L-1 XL-1,t

where X1t = 1  if period t is season 1
! 0  otherwise

where X2t = 1  if period t is season 2
! 0  otherwise

where XL-1,t = 1  if period t is season L-1
! 0  otherwise



yt ! Tt"St"It

! Tt"γ1X1t"γ2X2t"γ3X3t"It

(5.3)

yt ! Tt"St"It

! Tt" "
11

i!1
γiXit"It

(5.4)

yt ! (β0"β1t)"γ1X1t"γ2X2t"γ3X3t (5.5)

For example, if L=4 (quarterly data) we have 

Similarly, if L=12 (monthly data) we have

Clearly Tt can be represented by either a linear, quadratic or exponential relationship.

Example 5.3

To decompose an additive time series we use the data of Example 5.2 (BRD occurrence in eastern
Alberta) to estimate the trend and seasonal effects under the model,

Using SAS, the INPUT statement is given as:

INPUT t y X1 X2 X3;
CARDS ;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

21
14
5
8
25
16
7
9
25
18
9
13
30
20
10
15

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0

0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0

0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0



ŷt ! 5.69".55t"15.67 X1t"6.86 X2t#2.94 X3t

T̂t ! 5.69".55t

Ŝt ! 15.67 X1t"6.86 X2t#2.94 X3t

The SAS program is:

PROC REG;
MODEL y = t     X1t   X2t    X3t;
RUN;

The fitted series is given by

from which

and

the estimated components of the series are summarized in Table 5.3.

Table 5.3
Estimated Trend and Seasonal Effect of the Series (data from example 5.2)

Year Quarter
(Period)

t yt T̂t=5.69 + .55t Ŝt ŷt=T̂t+Ŝt et=yt-ŷt

1

2

3

4

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

21
14
5
8

25
26
7
9

25
18
6

13
30
20
10
15

 6.24
 6.79
 7.34
 7.89
 8.44
 8.99
 9.54
10.09
10.64
11.19
11.74
12.29
12.84
13.39
13.94
14.49

15.67
 6.86
-2.94

0
15.69
 6.86
-2.94

0
15.67
 6.86
-2.94

0
15.67
 6.86
-2.94

0

21.91
13.65
 4.40
 7.89
24.11
15.85
 6.60
10.09
26.31
18.05
 8.80
12.29
28.51
20.25
11.00
14.49

-0.91
 0.34
 0.60
 0.11
 0.89
10.15
 0.40
-1.09
-1.31
-0.05
-2.80
 0.71
 1.49
-0.25

-1
 0.51
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Figure 5.4 gives the actual series and the fitted series ŷt, for the additive models.

Figure 5.4. Observed values of y and predicted values of y from the additive model plotted
over time.

3. Detection of Seasonality : Nonparametric Test

Seasonality may be tested using a test based on ranks. The test is a simple adaptation of the
nonparametric analysis of variance procedure initially proposed by Friedman (1937). After removing
a linear trend, if desired, we rank the values within each year from 1 (smallest) to 12 (largest) for
monthly data. In general, let the years represent c columns and the months r (=12) rows. Then each
column represents a permutation of the integers 1, 2, ...,12. Summing across each row gives the
monthly score , j = 1, 2, ..., 12. Under the null hypothesis : no seasonal pattern, the testM j H 0

statistic 

{ }T M j
c r

cr r
j

r
= −

+
+

=
∑1 2

1

2

2
1

1

( )
/ ( ) (5.6)
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is approximately distributed as  with (r-1) degrees of freedom.χ 2



Example 5.4   The data from this example were kindly provided by Dr. J. Mallia of the Ontario
                    Veterinary College.

Cyanosis is one of the leading causes of condemnation of poultry in Canada. To investigate
seasonal patterns in the proportion of turkeys condemned we use the statistic (5.6). The data are
summarized in Table 5.4 and plotted in Figure 5.5.

Table 5.4
Number of Turkeys Condemned (per 100, 1000) Because of Cyanosis

1987 1988 1989 1990 1991 1992 1993

Month
Jan
Feb

March
April
May 
June
July
Aug
Sept
Oct
Nov
Dec

64.3
508.6
646.2
849.1
710.2
653.0
542.2
502.6
789.5
409.5
836.4
792.4

1168.7
1422.4
1748.4
1226.9
1061.0
905.6
875.7
943.0
1228.2
1286.0
1434.8
860.3

1173.7
1492.3
1600.5
1141.0
861.0
706.3
537.7
583.3
810.8
750.0
1137.6
1178.7

1140.4
1446.4
1002.7
999.5
485.1
416.9
562.6
483.7
490.4
670.5
605.6
618.5

691.2
370.9
454.3
393.9
374.0
253.2
428.2
429.5
393.7
387.9
587.0
618.5

1154.4
683.0
535.6
351.6
430.2
371.5
317.1
425.2
332.5
327.0
427.6
381.8

556.7
489.3
466.2
448.9
302.1
260.3
215.6
272.9
286.0
270.8
373.3
259.6

In Table 5.5 we provide the ranks,  and . M j M j
2

Table 5.5
Year

1987 1988 1989 1990 1991 1992 1993 M j M j
2

Month
1
2
3
4
5
6
7
8
9
10
11
12

1
4
6
12
8
7
5
3
9
2
11
10

6
10
12
7
5
3
2
4
8
9
11
1

9
11
12
8
6
3
1
2
5
4
7
10

11
12
10
9
3
1
5
2
4
8
6
7

12
2
9
6
3
1
7
8
5
4
10
11

12
11
10
4
9
5
1
7
3
2
8
6

12
11
10
9
7
3
1
5
6
4
8
2

63
61
69
55
41
23
22
31
40
33
61
47

3969
3721
4761
3025
1681
529
484
961
1600
1089
3721
2209
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Figure 5.5 Time series plot of proportion of turkeys condemned. The vertical axis is the
proportion.

4.  Autoregressive Errors: Detection and Estimation

One of the main characteristics of a true series is that adjacent observations are likely to
be correlated.  One way to detect such correlation is to plot the residuals et=yt-ŷt against time.
This is illustrated using the additive model, where the residuals (from Table 5.3) are plotted in
time order as in Figure 5.6.

Figure 5.6  Plot of residuals over time



d !

"
n

i!2
et#et#1

2

"
n

i!1
e 2

t

! 0.5624 (5.7)

εt ! ρ εt#1"ut (5.8)

yt ! β0"β1X1t"...βkXkt"εt (5.9)

εt ! ρεt#1"ut

ρ ! Corr(εt,εt#1) .

From the plot one can see that the residuals have the signs -,+,+,+,+,+,+,-,-,-,-,+,+,-,-,+.
This shows a tendency for residuals to be followed by residuals of the same sign, an indication of
possible autocorrelation.  Also evident from the plot of these residuals is a potential outlier
(et=10.15) from the 2nd quarter.  Usually, the Durbin-Watson statistic given by

is used to test for the significance of this correlation.  From Durbin and Watson (1951), the upper
and lower critical points of the Durbin-Watson statistic d at $=0.05, n=16 and 5 parameters in
the model are 0.74 and 1.93 respectively.  Since our value of d (0.5624) is less than the  lower
critical value, the hypothesis of no autocorrelation between the residuals is rejected.

When a significant autocorrelation has been detected, ignoring its effect would produce
unrealistically small standard errors for the regression estimates in the fitted model (5.6).
Therefore one has to account for the effect of this correlation to produce accurate estimates of the
standard error.  Our approach to modelling this autocorrelation at present will still be at a
descriptive level.  More rigorous treatment of the autocorrelation structure will be presented in
the next section.

The simplest autocorrelation structure that we shall examine here is called the "first order
autoregression process".  This model assumes that successive errors are linearly related through
the relationship

It is assumed that {ut; t=1,2,...n} are independent and identically distributed N(0,%2).  Under the
above specifications we have the model

where

and

Note that



                   (5.10)ρ ρβ ρβ ρβ εy t X t k X k t t− = + − + + − + −1 0 1 1 1 1 1  . . .

Subtracting (5.10) from (5.9) we have:

                   (5.11)y t y t X t X t k X k t X k t U t− − = − + − − + + − − +ρ β ρ β ρ β ρ1 0 1 1 1  1  1 1( ) ( ) . . . ( )  

The last equation has ut as an error term that satisfies the standard assumptions of inference in a
linear regression model.  The problem now is that the left hand side of (5.11) has a transformed
response variable that depends on the unknown parameter &.  A commonly used procedure to
estimate the model parameters is to use a procedure known as Cochran and Orcutt procedure
which we outline in the following 4 steps

Step (1) Estimate the parameters of the model (5.9) using least squares or PROC REG from
SAS, and compute the residuals e1, e2,...en

Step (2) From e1...en, evaluate the moment estimator of & as

                                                     (5.12)!ρ =
−

=

−
=

∑

∑

e e

e

t t
t

n

t
t

n

1
2

2

2

2

Step (3) Substitute &̂ in place of & in model (5.11) which has an error term that satisfies the
standard assumptions and compute revised least square estimates.

Step (4) From the least square estimates obtained in step (3), compute the revised residuals
and return to step (2); find an updated estimate of & using (5.12).  We iterate
between step (2) and step (4) until the least square estimate has an insignificant
change between successive iterations.

5. Modelling Seasonality and Trend Using Polynomial and Trigonometric Functions

It is desirable, in many applications of time series models, to estimate both the trend and
seasonal components in the series. This can be done quite effectively by expressing the series

as a function of polynomials in and a combination of sin, cos and trigonometric functions.y t t
Therefore 

y Q t F t et t= + +( ) ( )

where 



    ( )Q t tj

j

j

p

=
=
∑β

0

models the trend component and

  ( ) ( ) ( )[ ]F t a jt L b jt Lj j
j

q

= +
=

∑ sin / co s /2 2
1

π π

models the seasonal components, and  is the number of seasons in a year. Thus = 4 forL L
quarterly data, and = 12 for monthly data. We may fit one of the following models:L

(1) p = q = 1

( ) ( )y = + t+ a t/L + b  t/Lt
! ! sin cosβ β π π0 1 1 12 2

or

(2)       p = 1, q = 2

( ) ( ) ( ) ( )y t a t L b t L a t L b t Lt = + + + + +β β π π π π0 1 1 1 2 22 2 4 4sin / co s / s in / co s /

which may be suitable for modelling additive seasonal variation. Multiplicative time series may
be modelled by extending either model (1) or model (2):

For model (1), a time series with multiplicative seasonal variation becomes

( ) ( )′′y y c t t/L c t  t/Lt t= + +1 22 2sin co sπ π

whereas model (2) becomes

( ) ( )′′′ = ′′ + +y y d t 4 t/L d t  4 t/Lt t 1 2sin cosπ π

Example 5.5

The condemnation rate series of example 5.4 showed significant seasonal effect. Here we show
how to model both seasonality and trend in the series. Several models have been fitted using SAS
Proc Reg. After removing several outliers, the best model is 



            log(rate) = y t

                         ( ) ( )= + + + + +β β β β π π0 1 2
2

3
3

1 12 12 2 12t t t a t b tsin / cos /

The estimated coefficients are 

= 6.197 (.096),                     = .076 (.0097),         = -.002 (.0003)!β0
!β1

!β2

           = 15 x 10  (2 x 10 ),       = .195 (.0330),           = .206 (.0325)!β3
−6 −6 !a 1

!b1

          = 0.84R 2

and the root mean square error = .202.

Note the Proc Reg does not account for the correlation in the series. To account for such
correlation, we used Proc Genmod. The GEE approach gave similar coefficient estimates with
empirical standard errors that are robust against misspecification of the correlation structure (we
assumed AR(1)).

Input year month $ t rate;
sin = sin (2*22*t/(7*12));
cos = cos (2*22*t/(7*12));
t2 = t**2;
t3 = t*t2;
cards;

proc genmod data = season;
class year;

model y = t t2 t3 sin cos/
dist = n
link = id
dscale;

repeated subject = year / type = AR(1);
run;

          = 6.207 (.079),                     = .072 (.0082),         = -.002 (.0003)!β0
!β1

!β2

          = 15 x 10  (2 x 10 ),    = .179 (.0447),           = .200 (.0396)!β3
−6 −6 !a 1

!b1

The scale parameter = 0.2022.



Figure 5.7 shows the plot of the series (smooth curve) and the fitted series using the above model.

Figure 5.7 Plot of the rate series with predicted series from the regression with polynomial and
                        trigonometric components.

II. FUNDAMENTAL CONCEPTS IN THE ANALYSIS OF TIME SERIES

In order to establish a proper understanding of time series models, we introduce some of
the necessary fundamental concepts. Such concepts include a simple introduction to stochastic
processes, autocorrelation, and partial autocorrelation functions.

A. STOCHASTIC PROCESSES

As before,  denotes an observation made at time t. It is assumed that for each time pointy t

t,  is a random variable and hence its behavior can be described by some probability distribution.y t

We need to emphasize an important feature of time series models which is that observations made
at adjacent time points are statistically correlated. Our main objective is to investigate the nature of
this correlation. Therefore for two time points t and S, the joint behavior of (yt, ys) is determined
from their bivariate distribution. This is generalized to the collection of observations (y1, y2,...yn)
where their behavior is described by their multivariate joint distribution.

A stochastic process is a sequence of random variables {...y-2,y-1,y0,y1,y2,...}. We shall
denote this sequence by {yt:t=0, ±1, ±2,...}. For a given real-valued process we define the mean
function of the process:



µ t ! E(yt)

σ2
t ! E(yt"µ t)

2

γ(t,s) ! E[(yt"µ t)(ys"µ s)]

ρ(t,t) ! 1

ρ(t,s) ! ρ(s,t)

! ρ(t,s) ! "1

the variance function of the process:

the covariance function between yt and ys:

and the correlation function between yt and ys:

ρ γ

σ σ

γ
γ γ

( , )
( , ) ( , )

( , ) ( , )
t s

t s

t s

t s

t t s s
= =

2 2

From this definition it is easily verified that

Values of ρ(t,s) near ±1 indicate strong dependence, whereas values near zero indicate weak linear
dependence.

B.  STATIONARY SERIES

The notion of stationarity is quite important in order to make statistical inferences about
the structure of the time series.  The fundamental idea of stationarity is that the probability
distribution of the process does not change with time.  Here we introduce two types of stationarity;
the first is 'strict' or 'strong' stationarity and the other is 'weak' stationarity.

The stochastic process yt is said to be strongly stationary if the joint distribution of yt1
...ytn

is the same as the joint distribution of yt1-k
,...ytn-k

 for all the choices of the points t1...tn and all the time
lags k.  To illustrate this concept we examine the two cases n=1 and n=2.  For n=1, the stochastic
process yt is strongly stationary if the distribution of yt is the same as that of yt-k, for any k.  This
implies



E(yt) ! E(yt"k)

Var(yt) ! Var(yt"k)

γ(t,s) ! Cov(yt,ys) ! Cov(yt"k,ys"k)

γ(t,s) ! Cov(yt"s,y0)

! γ(0,!t"s!) ,

γ (t,t"k) ! γk ,

ρ(t,t"k) ! ρk

Cov(yt,yt#k) ! E[(yt"µ)(yt#k"µ)] ! γk

and

are constant or independent of t.  For n=2 the process is strongly stationary if the bivariate
distribution of (yt,ys) is the same as the bivariate distribution of (yt-k, ys-k), from which we have

Setting k=s, we obtain

hence

and

A process is said to be weakly stationary if

(1) µt = µ for all t
(2) γ(t,t-k) = γ(0,k) for all t and k

All the series that will be considered in this chapter are stationary unless otherwise specified.

C.  THE AUTOCOVARIANCE AND AUTOCORRELATION FUNCTIONS

For a stationary time series {yt}, we have already mentioned that E(yt) = µ, and Var (yt)
= E(yt-µ)2 (which are constant) and Cov (yt, ys) is a function of the time difference, !t-s!.  Hence we
can write



ρk ! Corr(yt,yt#k) !
Cov(yt,yt#k)

Var(yt)Var(yt#k)
!
γk

γ0

Var(y) !
1

n 2 !
n

t!1
!

n

s!1
Cov(yt,ys)

Cov(yt,ys) ! γ(t"s).

Var(y) !
1

n 2 !
n

t!1
!

n

s!1
γ(t"s) !

γ0

n !
n"1

k!"(n"1)
1" !k!

n
ρk

!
γ0

n
1#2 !

n"1

k!1
1"

k
n

ρk .

Var(y) !!
γ0

n
1#2 n"1

n
ρ1

!!
γ0

n
1#2ρ1 .

and

The functions γk and ρk are called the autocovariance and autocorrelation functions (ACF)
respectively.  Since the values of µ, γk and ρk are unknown, the moment estimators of these
parameters are as follows:

1. is the sample mean estimator of µ.  It is unbiased and has variance giveny !
1
n !

n

i!1
yi

by

From the strong stationarity assumption

Hence, letting k=t-s

When  ρk = 0    for   k = 2,3,... n-1   then, for large n

2. γ̂k !
1
n !

n"k

t!1
yt"y yt#k"y

is the moment estimate of the autocovariance function.



ρ̂k !
γ̂k

γ̂0

!

!
n"k

t!1
yt"y yt#k"y

!
n

t!1
yt"y 2

k!0,1,2,... (5.13)

Cov ρ̂k,ρ̂k#j # 1
n !

$

t!"$
(ρtρt#j#ρt#k#jρt"k

" 2ρkρtρt"k"j"2ρk#jρtρt"k#2ρkρk#jρ
2
t )

(5.14)

Var ρ̂k # 1
n !

$

t!"$
ρ2

t#ρt#kρt"k"4ρkρtρt"k#2ρ2
kρ

2
t

Var ρ̂k # 1
n

1#2ρ2
1#2ρ2

2#...2ρ2
% . (5.15)

A natural moment estimator for the autocorrelation function is defined as

A plot of ρ̂k versus k is sometimes called a sample correlogram.  Note that ρ̂k=ρ̂-k, which means that
the sample ACF is symmetric around k=0.

For a stationary Gaussian process, Bartlett (1946) showed that for k>0 and k+j>0, 

For large n, ρ̂k is approximately normally distributed with mean ρk and variance

For processes with ρk=0 for k>%, Bartlett's approximation becomes

In practice ρi(i=1,2,...%) are unknown and are replaced  by their sample estimates ρ̂i; the large sample
variance of ρ̂k is approximated on replacing ρi by ρ̂i in (5.15).

Example 5.6 

Using data on average milk fat yields over a period of 38 months, we first plot the series over time
(Figure 5.8), and then, using the time series programs in SAS (ETS) we can calculate the correlations
for up to 4 lags.  For this particular example PROC AUTOREG was used to generate the values of

 for k=0,1,..4.  Note that from the time plot it appears that the series is not stationary.ρk



Figure 5.8  Time series plot of average milk fat yield over a period of 38 months.

The estimates of the autocorrelation and the covariance for the 5 lag periods are as follows:

         Lag           Covariance         Correlation

0 0.007673 1.0000
1 0.004139 0.5394
2 0.002742 0.3573
3 0.001464 0.1908
4 0.000293 0.0382

III.  MODELS FOR STATIONARY TIME SERIES

In this section we consider models based on an observation made by Yule (1921, 1927)
that time series in which successive values are autocorrelated can be modelled as a linear
combination (or linear filter) of a sequence of uncorrelated random variables.  Suppose that {ata; t=0,
±1, ±2,...} are a sequence of identically distributed uncorrelated random variables with E(at)=0 and
Var(at)=σ2, and Cov (at, at-k)=0 for all k10.  Such a sequence is commonly known as a 'white noise'.
With this definition of white noise, we introduce the linear filter representation of the process yt.



yt ! at#ψ1at"1#ψ2at"2#...

! !
$

j!0
ψj at"j , ψ0!1

!
$

i!1
ψ2

j < $ .

yt ! φ1yt"1#φ2yt"2#...φpyt"p#at (5.16)

yt ! !yt"1#at . (5.17)

yt"µ ! φ(yt"1"µ)#at

A general linear process yt is one that can be presented as

For the infinite series of the right-hand side of the above equation to be meaningful, it is
assumed that

A. AUTOREGRESSIVE PROCESSES

As their name implies, autoregressive processes are regressions on themselves.  To be
more specific, the pth order autoregressive process yt satisfies,

In this model, the present value yt is a linear combination of its p most recent values plus an
"innovation" term at, which includes everything in the series at time t that is not explained by the past
values.  It is also assumed that at is independent of yt-1, yt-2,....

Before we examine the general autoregressive process, we first consider the first-order
autoregressive model which is denoted by AR(1).

1. The AR(1) Model

Let yt be a stationary series such that

Most text books write the above model as

where µ is the mean of the series.  However, we shall use (5.17) assuming that the mean has been
subtracted from the series.  The requirement !φ!<1 is a necessary and sufficient condition for
stationarity.



γ0 !
σ2

a

1"φ2
. (5.18)

E(ytyt"k) ! φE(yt"1yt"k)#E(yt"kat) .

γk ! φγk"1 k!1,2,... (5.15)

γ1 ! φγ0 ! φ
σ2

a

1"φ2
;

γ2 ! φγ1 ! φ φ
σ2

a

1"φ2

! φ2 σ2

1"φ2
! φ2γ0 .

γk ! φkγ0

ρk !
γk

γ0

! φk . (5.19)

From (5.17), Var (yt) = φ2 Var (yt-1) + Var (at)  or  γ0 = φ2 γ0 + σa
2 from which

Multiplying both sides of (5.17) by yt-k and taking the expectation, the result is,

By the stationarity of the series, and the independence of yt-1 and at,

For k=1,

for k=2,

By mathematical induction one can show that

or

Note that since !φ!<1, the autocorrelation function is exponentially decreasing in k.  For 0<φ<1, all
ρk are positive.  For -1<φ<0, ρ1<0 and the sign of successive autocorrelations alternate (positive if
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k is even and negative if k is odd).

Figures 5.9a and 5.9b are graphs of ρ for φ=0.8, and -.5.

Figure 5.9a   Autocorrelation plot for a φ of 0.8 and k=1,2,...8.

Figure 5.9b   Autocorrelation plot for a φ of -0.5 and k=1,2,...8.



yt ! φ1yt"1#φ2yt"2#at . (5.20)

φ1#φ2<1

φ2"φ1<1

and "1<φ2<1

E(ytyt"k) ! φ1E(yt"1yt"k)#φ2E(yt"2yt"k)

#E(atyt"k)

γk ! φ1γk"1 # φ2γk"2 (5.21)

ρk ! φ1ρk"1 # φ2ρk"2 (5.22)

ρ1 ! φ1ρ0 # φ2ρ"1

ρ1 !
φ1

1"φ2

.

2. AR(2) Model (Yule's Process)

The second order autoregressive process AR(2) is a stationary series yt that is a linear
combination of the two preceding observations and can be written as

To ensure stationarity the coefficients φ1 and φ2 must satisfy

The above conditions are called the stationarity conditions for the AR(2) model.

To derive the autocorrelation function for the AR(2) we multiply both sides of (5.20) by yt-k,
(k=1,2,...,) and take the expectations.  Under the assumptions of independence of yt and at and the
stationarity of the series we have

from which

and dividing by γ0 we get

Equation 5.22 is called Yule-Walker equation.  For k=1

Since ρ0=1 and ρ-1 = ρ1 we have



ρ2 ! φ1ρ1 # φ2

ρ2 ! φ2 #
φ2

1

1"φ2

.

Var(yt) ! φ2
1Var(yt"1)# φ

2
2Var(yt"2)

# 2φ2φ2Cov(yt"1,yt"2)# σ
2
a

γ0 ! φ2
1γ0 # φ2

2γ0 # 2φ1φ2γ1 # σ2
a . (5.23)

γ1 ! φ1γ0#φ2γ"1

! φ1γ0#φ2γ1

γ1 ! φ1

γ0

1"φ2

(5.24)

γ0 ! (φ2
1#φ

2
2)γ0 # 2φ2

1φ2

γ0

1"φ2

# σ2
a

γ0 !
σ2

a(1"φ2)

(1"φ2)(1"φ
2
1"φ

2
2) " 2φ2

1φ2

(5.25)

For k=2

or

Note also that the variance of the AR(2) process can be written in terms of the model parameters.
In fact, from (5.20) we have

or

Setting k=1 in equation (5.21) we have

which gives

Substituting in (5.23), 

and hence



yt ! at"θ1at"1"θ2at"2..."θqat"q

yt ! at " θat"1 (5.26)

E(yt) ! 0

γ0 ! Var(yt) ! σ2
a # θ2σ2

a ! σ2
a(1#θ2) .

Cov(yt,yt"1) ! E(ytyt"1)

! E[(at"θat"1)(at"1"θat"2]

! E[atat"1]"θ E[a 2
t"1]#E[atat"2]

# θ2E[at"1at"2] .

γ1 ! Cov(yt,yt"1) ! "θσ2
a

Cov(yt,yt"k) ! 0 . k!2,3,...

It should be noted that, for -1<φ2<0 the AR(2) process tends to exhibit sinusoidal behaviour,
regardless of the value of φ1.  When 0<φ2<1, the behavior of the process will depend on the sign of
φ1.  For φ1<0, the AR(2) process tends to oscillate and the series shows ups and downs.

3.  Moving Average Processes

Another type of stochastic model that belongs to the class of linear filter models is called a
moving average process.  This is given as:

This series is called a "Moving Average" of order q and is denoted by MA(q).

4.  First Order Moving Average Process MA(1)

Here we have

Moreover,

Since a1, a2... are independent with E(at) = 0 for all t, then

Furthermore, the autocorrelation function is



ρ1 !
γ1

γ0

! "
θ

1#θ2
. (5.27)

at ! yt # θat"1

! yt # θ(yt"1 # θat"2)

! yt # θyt"1 # θ2at"2

at ! yt # θyt"1 # θ2yt"2 #...

or yt ! "(θyt"1 # θ2yt"2 #...) # at .
(5.28)

yt ! at " θ1at"1 " θ2at"2 . (5.29)

γ1 ! Cov(yt,yt"1) ! E (at"θ1at"1"θ2at"2)(at"1"θ1at"2"θ2at"3)

! "θ1σ
2
a#θ1θ2σ

2
a

! ("θ1#θ1θ2)σ
2
a

(ρk=0 for k=2,3,...)

Note that if θ is replaced by 1/θ in (5.27), we get exactly the same autocorrelation function.
This lack of uniqueness of MA(1) models must be rectified before we estimate the model
parameters.

Rewriting equation (5.26) as

and continuing this substitution,

If !θ!<1, we see that the MA(1) model can be inverted into an infinite-order AR process.  It can be
shown (see Box & Jenkins 1970) that there is only one invertible MA(1) model with the given
autocorrelation function ρ1.

5.  The Second Order Moving Average Process MA(2)

An MA(2) process is defined by:

The autocovariance functions are given by



γ2 ! Cov(tt,yt"2) ! E (at"θ1at"1"θ2at"2)(at"2"θ1at"3"θ2at"4)

! "θ2σ
2
a

γ0 ! Var(yt) ! σ2
a#θ

2
1σ

2
a#θ

2
2σ

2
a

! (1#θ2
1#θ

2
2)σ

2
a

ρ1 !
γ1

γ0

!
("θ1#θ1θ2)

1#θ2
1#θ

2
2

ρ2 !
γ2

γ0

! "
θ2

1#θ2
1#θ

2
2

ρk ! 0 ,k!3,4,...

(5.30)

(5.31)

yt ! (φ1yt"1#φ2yt"2#...φpyt"p)#(at"θ1at"1"θ2at"2

"..."θqat"q)
(5.32)

and,

Therefore for an MA(2) process

6.  The Mixed Autoregressive Moving Average Processes

In modelling time series we are interested in constructing a parsimonious model.  One type
of such a model is obtained from mixing an AR(p) with an MA(q).  The general form of this is given
by:

The process yt defined in (5.32) is called the mixed autoregressive moving average
 process of orders p and q, or ARMA (p,q).

An important special case of the ARMA(p,q) is ARMA(1,1) which can be obtained from
(5.32) for p=q=1. Therefore an ARMA(1,1) is



yt ! φyt"1#at"θat"1 (5.33)

E(ytyt"k) ! φE(yt"1yt"k)#E(atyt"k)

"θE(at"1yt"k)

γk ! φγk"1 # E(atyt"k) " θE(at"1yt"k) . (5.34)

γ0 ! φγ1 # E(atyt) " θE(at"1yt) , (5.35)

E(atyt) ! σ2
a .

E(at"1yt) ! φE(at"1yt"1)#E(atat"1)"θE(a 2
t"1)

! φσ2
a"θσ

2
a ! (φ"θ)σ2

a

γ0 ! φγ1#σ
2
a"θ(φ"θ)σ

2
a (5.36)

γ1 ! φγ0#E(atyt"1)"θE(at"1yt"1)

! φγ0#E(atyt"1)"θσ
2
a .

(5.37)

For stationarity we assume that !φ!<1 and for invertibility, we require that !θ!<1.  When φ=0, (5.33)
is reduced to an MA(1) process, and when θ=0, it is reduced to an AR(1) process.  Thus the AR(1)
and MA(1) may be regarded as special processes of the ARMA(1,1).

To obtain the autocovariance for the ARMA(1,1), we multiply both sides of (5.33) by yt-k and
take the expectations

from which

For k=0

and

Noting that

and substituting in (5.35) we see that,

and from (5.34) when k=1,



E(atyt) ! φE(atyt"1)#E(a 2
t )"θE(atat"1)

σ2
a ! φE(atyt"1)#σ

2
a

E(atyt"1) ! 0 (5.38)

γ1 ! φγ0"θσ
2
a (5.39)

γ0 ! φ2γ0"φθσ
2
a#σ

2
a"θφσ

2
a#θ2σ2

a

γ0 !
(1#θ2"2φθ)

1"φ2
σ2

a .

γ1 ! φ 1#θ2"2φθ
1"φ2

σ2
a " θσ2

a

!
(φ"θ)(1"φθ)

1"φ2
σ2

a .

γk ! φγk"1 .

But,

or

so,

Substituting (5.38) in (5.37),

and using this in (5.36) we have

from which

Thus

From (5.34), we have



E(yt) ! α0#α1t

yt ! α0#α1t#at

yt ! α0#α1t#...#αkt
k#at . (5.42)

Hence, the ARMA(1,1) has the following autocorrelation function

1 k=0
ρk  = (φ-θ)(1-φθ) k=1 (5.40)

"  1+"2-2!"
! #k-1 k'2

IV.  MODELS FOR NONSTATIONARY TIME SERIES

The time series processes we have introduced (AR, MA, and ARMA) thus far are all
stationary processes.  This implies that the mean, variance and autocovariances of the process are
invariant under time translations.  Thus the mean and the variance are constants and the
autocovariance depends on the time lag.

Many applied time series, however, are not stationary.  For example most economic time
series exhibit changing levels and or variances over time.  Examples of nonstationary time series
plots can be found in Section I (Figure 5.1) and Section II (Figure 5.5) of this chapter.

A.  NONSTATIONARITY IN THE MEAN

A time series which is nonstationary in the mean could pose some serious problems for
estimation of the time dependent mean function.  However, there are two classes of models that
have been proven to model nonstationary in the mean time series.  These two models are 

1. Deterministic Trend Models

For a time series with changing mean, that is, when the mean is time dependent, a standard
regression model may be used.  For example, one may model the mean as

and the corresponding linear regression trend model would be given as

with at being a zero mean white noise series.  More generally, we may describe the deterministic
trend as



yt ! c0#c Cos(wt#θ)#αt

! c0#α Cos wt#β sin wt#at

α ! c Cos θ , β! "c sin θ

c ! α2#β2

and θ ! arctan ("β / α)

yt ! φyt"1#at

yt ! 2 yt"1#at

Alternatively, we may model the trend by a sine-cosine curve so that

where

The parameters c, w, and " are called the amplitude, the frequency, and the phase of the
curve respectively.

2.   Stochastic Trend Models

Nonstationary time series that are described by a stochastic trend are usually referred to
as "homogeneous nonstationarity".  Its main characteristic is that, apart from local trend, one part
of the series behaves like the other.

Titner (1940), Yaglom (1951), and Box and Jenkins (1976) claim that a homogeneous
nonstationarity sequence can be transformed into a stationary sequence by taking the successive
differences of the series.  To illustrate this idea let us consider the following example.

Example 5.6

We have shown that the AR(1) model

is stationary if and only if !!!<1.  The question is what happens when !!!'1.  For example if
we let !=2 so that

where at is a white noise with E(at) = 0, Var(at) = $a
2 and yt and at are independent, and since



yt ! 2 2 yt"1#at"1#at

! 4 yt"2#2 at"1#at

! 4 2 yt"3#at"3#2 at"1#at

! 8 yt"3#4 at"2#2 at"1#at

yt ! 2ty0#2t"1a1#2t"2a2#...2 at"1#at

! 2ty0# !
t"1

j!0
2j at"j .

(5.43)

Var(yt) ! !
t"1

j!0
22j Var at"j

! σ2
a !

t"1

j!0
4j ! σ2

a
4t"1

3
.

(5.44)

E(yt yt"k) ! 22t"k y 2
0#2k 4t"k"1

3
σ2

a .

Cov yt , yt"k ! 22t"k y 2
0#2k 4t"k"1

3
σ2

a"(2ty0)(2
t"ky0)

!
2k

3
4t"k"1 σ2

a ,

(5.45)

then if we continue in this manner we have

Clearly, since E(yt) = 2ty0, which depends on t, then the series is nonstationary.  The variance of
yt is,

Multiplying both sides of (5.43) by yt-k and taking expectation we get:

Hence

which depends on t.



yt ! yt"1#at (5.46)

yt ! yt"1#β#αt (5.47)

µ t ! yt"1#β

wt ! yt"yt"1 ! β#at

yt ! φ1yt"1#φ2yt"2#at

yt ! 2 yt"1"yt"2#at .

Wt ! (yt ! yt"yt"1 ! yt"1"yt"2#at

B.  DIFFERENCING

To illustrate how successive differencing can be used to achieve stationarity of a
nonstationary series let us consider the following simple model

which is known as the random walk model.  Note that the model (5.46) is an AR(1) with !)1.
Since the ACF of the AR(1) is #k=!k, then as !)1, the random walk model is described by large
nondying spikes in the sample ACF.

Next, consider the following modification of the model (5.46) so that

The conditional expectation of this series given yt-1, yt-2,... is

Apart from the constant slope %, the conditional expectation µt depends on the previous
observation yt-1.  Since yt-1 is subject to random variation, the trend changes stochastically.  It is
clear that the first difference

would produce a stationary series.

Another example is the AR(2) series

If !1=2 and !2=-1, henceforth violating the stationarity assumptions of the AR(2) model, we
have

The first difference is



wt ! wt"1#at ;

wt ! φ1wt"1#φ2wt"2#...φpwt"p#at"θ1at"1..."θqat"q (5.48)

or

this means that the difference (wt - wt-1), which is the second difference of the original series, is
stationary.

Referring to the data of example 5.1 (SCC data) we try to stationarize the mean through
differencing by 1 lag.  This is actually quite effective as can be seen in the resulting plot of the
differenced data (Figure 5.10).

               
               
               
               
               
               
               
               
               
               
               
               
               
                                                                           
Figure 5.10  Plot of the SCC data - differencing by one lag to stabilize the mean.

C.  ARIMA MODELS

A series yt is said to follow an autoregressive integrated moving average (ARIMA) model
of order d if the dth difference denoted by (dyt is a stationary ARMA model.  The notation used
for this model is ARMA (p,d,q), where p is the order of the autoregressive component, q is the
order of the moving average component, and d is the number of differences performed to produce
a stationary series.  Fortunately, for practical reasons we can take d=1 or 2.

An ARIMA (p,1,q) process can be written as



wt ! yt"yt"1

wt ! at"θ1at"1

or yt ! yt"1#at"θ1at"1

(5.49)

(yt ! at"θat"1

or yt ! yt"1#at"θat"1

yt ! ym#at#(1"θ)at"1#...#(1"θ)am#1"θam

yt"k ! ym#at"k#(1"θ)at"k"1#...#(1"θ)am#1"θam

Var(yt) ! 1#(t"m"1)(1"θ)2 σ2
a (5.50)

Var(yt"k) ! 1#(t"k"m"1)(1"θ)2 σ2
a (5.51)

where

As an example, the ARIMA (0,1,1) or IMA(1,1) is given by 

which means that the first difference (d=1) would produce a stationary MA(1) series as long as
!"1!<1.

D.  NONSTATIONARITY IN THE VARIANCE

A process that is stationary in the mean is not necessarily stationary in the variance and the
autocovariance.  However, a process that is nonstationary in the mean will also be nonstationary
in the variance and the autocovariance.  Clearly, the ARIMA model is nonstationary in the mean;
before we show that it is nonstationary in the covariance, we demonstrate that the complete
properties of the process are determined by a few parameters.  To show this, suppose that the
model IMA(1,1) which satisfies,

is fitted to a series of m observations.  By successive substitutions we can write

Similarly, for t-k>m

Hence, with respect to the time origin m



Cov(yt,yt"k) ! (1"θ)#(t"k"m"1)(1"θ)2 σ2
a (5.52)

Corr(yt,yt"k) !
(1"θ)#(t"k"m"1)(1"θ)2

1#(t"m"1)(1"θ)2 1#(t"k"m"1)(1"θ)2
(5.53)

Var(yt) ! C V(µ t)

F(yt)#F(µ t)#(yt"µ t)F
$(µ t)

Var(F(yt)) ! Var(yt) (F $(µ t))
2

! C V(µ t)(F
$(µ t))

2 .
(5.54)

F $(µ t)
2
!

1
V(yt)

From equations (5.50) to (5.53) one can see that Var(yt) increases with t.  Moreover, the
autocovariance and autocorrelation functions depend on the lag k, the time origin t and the
reference point m.  Finally, Corr (yt,yt-k) # 1 for large m and moderate k, which implies that the
autocorrelation function vanishes slowly as k increases.

Remark:  "Variance Stabilizing Transformation"

Not all nonstationary series can be stationarized through differencing.  In fact there are
many time series that are stationary in the mean but nonstationary in the variance.  To overcome
this problem, transformations such as the logarithm or square root, perhaps followed by
differencing are useful methods in certain situations.  It is very common to encounter series where
increased variance seems to be associated with increased levels (means) of the series.  This
relationship between the variance and the mean can be modelled as

for some constant C and function V(*).  To find the approximate transformation F that stabilizes
the variance of yt, we approximate the function F by the first term of a Taylor's series expansion
about µt.  That is

where F+(µt) is the first partial derivative of T with respect to yt, evaluated at yt=µt.  Now,

Thus in order that Var (F(yt)) be constant we must have

or



F $(µ t) !
1

V(yt)

F(µ t) ! #
1

V(µ t)
dµ t . (5.55)

F(µ t) ! %n(µ t)

F(µ t) ! 2 µ t .

or

As an example, if V(µt) = µt
2, then

Hence the logarithmic transformation %n(yt) will give a constant variance.  If V(µt) = µt, then !yt

will give a constant variance.  If V(µt) = µt
4, then  which means that theT(µ t) ! "

1
µ t

reciprocal transformation 1/yt will have a constant variance.

A general family of transformations, known as the "Power Transformation" was introduced
by Box and Cox (1964).  For a given value of the parameter &, the transformation is defined by

T(yk) = yt
&-1 &&0 (5.56)

"   &
ln (yt) &=0

Note that &=1/2 produces a square root transformation useful with Poisson like data, and &=-1
corresponds to a reciprocal transformation. For all practical purposes, a precise estimate of & is
not needed and a grid of values in the interval [-2,2] may suffice.

V.  MODEL SPECIFICATION AND PARAMETER ESTIMATION

A.  Specification

We have discussed some of the parametric models for stationary and nonstationary time
series.  To model time series data it is quite important to identify and build an appropriate model.
The objectives of this section are:  (i) how to select appropriate values of p,d, and q of an ARIMA



yt ! at white noise model

Var(ρ̂k) # 1
n

yt ! φ yt"1#at (AR(1) model)

ρk ! φk

Var(ρ̂k) # 1
n

(1#φ2)(1"φ2k)

1"φ2
" 2k φ2k (5.57)

Var(ρ̂1) # 1"φ2

n
(5.58)

model, for a given series, (ii) how to estimate the parameters of the specified model. 

As we have already indicated, many of the characteristics of the time series can be studied
in terms of the ACF #k.  Another function which is quite useful in identifying a time series model,
is the partial autocorrelation function (PAC).  This function will be discussed in this section.  First
we start by defining what is meant by model specification.

Model specification or model identification is the methodology followed by researchers in
identifying the required transformations such as variance stabilizing transformations and/or
differencing transformations, and the proper values of p and q.

The following steps are helpful in identifying a time series model:

(i) Plot the data.  Careful examination of the plot may reveal seasonality, trend,
nonconstancy of variance, nonstationarity and other features of the series.
(ii) For the series y1, y2,...yn, construct the sample ACF #̂k (see 5.13).  The large
sample variance of the #̂k is given by (5.15).  For some of the models considered in this
chapter the following approximate results were given by Cryer (1986).

1)    

2)

and

For k=1



Var(ρ̂k) #
1#2 !

q

i!1
ρ2

i

n
k>q

Z !
n ρ̂q#1

1#2 !
q

i!1
ρ̂2

i

(5.59)

φkk ! Corr (yt,yt#k ! yt#1,...yt#k"1) (5.60)

yt#k ! φk1 yt#k"1#φk2 yt#k"2#...φkk yt#et#k (5.61)

γi ! φk1 γi"1#φk2 γi"2#...φkk γi"k

ρi ! φk1 ρi"1#φk2 ρi"2#...φkk ρi"k .

3)  For the MA(q) process we have

To test the hypothesis that the series is an MA(q) we compare

to the critical point of a standard normal distribution.  The model MA(q) is rejected for large
values of Z.

(iii) Since for the MA(q) process the correlation function is zero for lags larger than q,
the sample autocorrelation function may be a good indicator of the order of the process.
However, the autocorrelation of an AR(p) process does not stay at zero after a certain
number of lags.  The partial autocorrelation function can be useful for determining the
order p. This partial autocorrelation function (PAC) describes the correlation between yt

and yt+k after removing the effect of the intervening variables yt+1, yt+2,... yt+k-1.  It is
defined as

Consider a stationary process yt and assume that its values have already been subtracted from the
mean so that E(yt) = 0.  Suppose that yt+k is regressed on k lagged variables yt, yt+1,...yt+k-1.  That
is

where !kj is the jth regression parameter and et+k is a normal error term not correlated with yt+k-i

for i'1.  Multiplying both sides of equation (5.61) by yt+k-i and taking the expectation we obtain

and when both sides are divided by '0 we get



ρ1 ! φk1ρ0#φk2ρ1#...#φkkρk"1

ρ2 ! φk1ρ1#φk2ρ2#...#φkkρk"2

.

.

ρk ! φk1ρk"1#φk2ρk"2#...#φkkρ0

(5.62)

φkk !

ρk " !
k"1

j!1
φk"1,j ρk"j

1"!
k"1

j!1
φk"1,j ρj

φkj ! φk"1,j " φkkφk"1,k"j

(5.63)

φ11 ! ρ1

φ22 !
ρ2"ρ

2
1

1"ρ2
1

φ21 ! φ11"φ22φ11

and φ33 !
ρ3"φ21ρ2"φ22ρ1

1"φ21ρ1"φ22ρ2

.

For i=1,2,...k we have the following system of equations

Levinson (1947) gave an efficient method for obtaining the solutions of equations (5.62).  He
showed that

j=1,2,...k-1

In particular

Quenouille (1949) has shown that, under the hypothesis that the correct model is AR(p), the
estimated partial autocorrelation at lags larger than p are approximately normally distributed with



yt ! φ1yt"1#φ2yt"2#...#φpyt"p#at"θat"1"..."θqat"q

y !
1
n !

n

t!1
yt .

ρk ! φ1ρk"1#φ2ρk"2#...φpρk"p for k>1

ρ1 ! φ1#φ2ρ1#φ3ρ2#...#φpρp"1

ρ2 ! φ1ρ1#φ2#φ3ρ1#...#φpρp"2

.

.

ρp ! φ1ρp"1#φ2ρp"2#...#φp

mean zero and variance 1/n.  Thus ±1.96/!n can be used as critical limits on !̂kk for k>p to test
the hypothesis of an AR(p) model.

B.  Estimation

After identifying a tentative model, the next step is to estimate the parameters of this model
based on the observed time series y1, y2,..., yn.  With respect to nonstationarity, since the dth

difference of the observed series is assumed to be the general stationary ARMA(p,q) model, we
need only concern ourselves with estimating the parameters of the model,

where we assume that the mean µ is subtracted from the observations and stationarity has been
achieved.  Moreover {at} are i.i.d. N(0,$a

2) white noise.

We now discuss two of the widely used estimation procedures.

a.  The Method of Moments

This method is the simplest technique used in estimating the parameters.  It consists of
equating sample moments to theoretical moments and solving the resulting equations to obtain
estimates of the unknown parameters.

For example, in the AR(p) model (5.16) the mean µ=E(yt) is estimated by,

To estimate !1, !2,...!p, we use the equation

to obtain the following system of equations



φ̂1

φ̂2

.

.

.
φ̂p

!

1
ρ̂1

.

.

.
ρ̂p"1

ρ̂1

1
.
.
.
ρ̂p"2

ρ̂p"1

ρ̂p"2

.

.

.
1

"1 ρ̂1

ρ̂2

.

.

.
ρ̂p

(5.64)

γ0 ! φ1γ1#φ2γ2#...φpγp#σ
2
a (5.65)

σ̂2
a ! γ̂0(1"φ̂1ρ̂1"φ̂2ρ̂2"...φ̂pρ̂p) (5.66)

yt ! φyt"1#at

φ̂1 ! ρ̂1

µ̂ ! y

σ̂2
a ! γ̂0(1"φ̂1ρ̂1)

γ̂0 !
1

n"1 !
n

t!1
(yt"y)2

yt ! at"θ at"1

Then replacing #k by ̂#k we obtain the moment estimators !̂1,!̂2,... !̂p by solving the above system
of linear equations.  That is

Having obtained !̂1,!̂2,... !̂p we use the result

to obtain the moment estimator of $a
2 as

We now illustrate the method of moments on the AR, MA, and ARMA models:
(1)  For the AR(1) model

and from (5.64)

where

is the sample variance of the series

(2)  Consider the MA(1) model



ρ1 ! "
θ

1#θ2

θ̂ !
"1± 1"4ρ̂2

1

2ρ̂1

σ̂2
a !

γ̂0

1#θ̂2

yt ! φyt"1#at"θat"1

ρ̂k ! φk ! φ̂ρ̂k"1 k'2

ρ̂1 !
(φ̂"θ̂)(1"φ̂θ̂)

1#θ̂2
"2φ̂θ̂

Since

then replacing #1 by #̂1 and solving the quadratic for "1 we have

If  #̂ = ± .5  we have a unique solution = ± 1  but neither is invertible.  If !#̂1!>.5, no realθ̂
solution exists.  For !#̂1!<.5, there exist two distinct real valued solutions and we have to choose
the one that satisfies the invertibility condition.  Having obtained an estimate , the white noiseθ̂
variance is estimated as

(3)  Consider the ARMA (1,1) model

From (5.40) we have

and

First we estimate ! as  =#̂2/#̂1 and then solve the above quadratic equation for , and only theφ̂ θ̂
solution that satisfies the invertibility condition is kept.

In (2) and (3) it can be seen that the moment estimators for MA and ARMA models are
complicated, and are very sensitive to rounding errors.  They are usually used to provide initial
estimates needed for other estimation procedures such as maximum likelihood estimation, which
we discuss in the remainder of this section.

b.  Maximum Likelihood Method

To illustrate how the maximum likelihood is used we consider the simplified model AR(1):



!yt ! φ !yt"1#at !φ!<1

e1 ! y1"µ

a2 ! y2"µ"φ(y1"µ)

a3 ! y3"µ"φ(y2"µ)

.

.

an ! yn"µ"φ(yn"1"µ).

p(e1,a2,a3,...an) ! f(e1) $n
t!2

f(at)

!
1"φ2

2πσ2
a

1/2

exp
"e 2

1 (1"φ2)

2σ2
a

1

2πσ2
a

n"1
2 exp" 1

2σ2
a

!
n

t!2
a 2

t

y1"µ ! e1

y2"µ ! a2#φ(y1"µ)

yn"µ ! an#φ(yn"1"µ) ,

where !yt=yt-µ and at are iid N(0,$a
2).  Write

Note that e1 follows a normal distribution with mean 0 and variance 
σ2

a

(1"φ2)
,

and at,N(0,$a
2), t=2,3,...n.

Since e1, a2, a3,...an are independent of each other their joint distribution is given by:

Consider the inverse transformations:

whose Jacobian is 1.  Therefore, the joint distribution of y1-µ, y2-µ,...yn-µ is



L !
1"φ2

2πσ2
a

1
2 exp "

(y1"µ)2(1"φ2)

2φ2
a

. 1

2πσ2
a

n"1
2 exp "

1

2σ2
a

!
n

t!2
yt"µ"φ yt"1"µ 2

% ! "
n
2

%n σ2
a#

1
2

%n(1"φ2) "
s(φ,µ)

2σ2
a

s(φ,µ) ! (y1"µ)2(1"φ2)# !
n

t"2
yt"µ"φ(yt"1"µ) 2

! (y1"µ)2(1"φ2)#s %(φ,µ)

and s %(φ,µ) ! !
n

t!2
yt"µ"φ(yt"1"µ) 2

(5.67)

σ̂2
a !

s(φ,µ)
n

(5.68)

s(φ,µ)# !
n

t!2
yt"µ"φ(yt"1"µ) 2

The log-likelihood is given by:

where 

For given ! and µ, % can be maximized with respect to $a
2.  Setting  we get-%

-σ2
a

! 0

Since s*(!,µ) involves a sum of n-1 similar terms and the term (y1-µ)2 (1-!2) does not depend on
n, we have s(!,µ) # s*(!,µ), or

Differentiating s*(!,µ) with respect to µ, equating to zero, and solving for µ we get



µ̂ !

!
n

t!2
yt"φ !

n

t!2
yt"1

(n"1)(1"φ)

(5.69)

!
n

t!2

yt

n"1
# !

n

t!2

yt"1

n"1
# y

µ̂ # y (5.70)

-s %(φ,µ̂)
-φ

! "2 !
n

t!2
yt"y"φ(yt"1"y) (yt"1"y)

φ̂ !

!
n

t!2
(yt"y)(yt"1"y)

!
n

t!2
(yt"1"y)2

. (5.71)

(yt"µ) " φ(yt"1) ! at

Since for large n

then regardless of the value of !, equation (5.69) gives

Finally differentiating s*(!,µ̂) with respect to ! we have

which when set to zero and solving for ! yields

Remark

The maximum likelihood estimators (5.70) and (5.71) are also referred to as the least
squares (LS) estimators as they can be obtained by minimizing the sum of squares of the
differences

from the AR(1) model.  Clearly this sum of squares is identically s* (!,µ).  This indicates that the
MLE and the LS estimates of µ and ! are approximately equal.

The large sample properties of the maximum likelihood and least squares estimators are
identical and can be obtained by modifying standard maximum likelihood theory for large samples.
The details are omitted and can be found in Box and Jenkins (1976).



AR(1): Var(φ̂) !! 1
n

(1"φ2)

MA(1): Var(θ̂) !! 1
n

(1"θ2)

ARMA(1,1): Var(φ̂) !! 1"φ2

n
1"φθ
φ"θ

2

Var(θ̂) !! 1"θ2

n
1"φθ
φ"θ

2

Cov(φ̂,θ̂) !! (1"φ2)(1"θ2)
1"φθ

(5.72)

For large n, the estimators are approximately unbiased, normally distributed and have
approximate variance given by:

Example 5.7 Using the somatic cell count data, we will fit two models: the AR(1) and the
MA(1).  This will be accomplished by using the ETS program in SAS; more
specifically by utilizing the PROC ARIMA procedure.  The data were differenced
once so as to stabilize the mean.

 
SAS Plots of the Autocorrelation Function and the Partial Correlation Function

                                             Autocorrelations

             Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1         Std
               0   1007.500    1.00000  |                    |********************|          0
               1   -207.536   -0.20599  |              ****|   .                          |   0.109764
               2   -293.539   -0.29135  |            *****|    .                         |   0.114327
               3    177.445    0.17612   |              .    |****.                        |   0.122948
               4  16.087389    0.01597  |             .    |    .                          |   0.125951
               5   -196.800   -0.19533   |           .****|    .                          |   0.125975
               6  43.477143    0.04315  |             .    |*   .                         |   0.129573
               7   -110.087   -0.10927   |            .  **|    .                          |   0.129746
               8 -90.458840   -0.08979 |            .  **|    .                          |   0.130850
               9    129.236    0.12827    |             .    |*** .                        |   0.131590
              10  15.333874    0.01522 |             .    |    .                         |   0.133088
              11   -103.832   -0.10306  |            .  **|    .                         |   0.133109
              12    244.896    0.24307   |             .    |*****                      |   0.134067
              13    186.837    0.18545   |            .     |**** .                      |   0.139276
              14   -175.962   -0.17465  |           .  ***|     .                       |   0.142219
              15 -86.242765   -0.08560|           .   **|     .                       |   0.144781
              16  44.315590    0.04399 |            .     |*    .                       |   0.145389
              17  12.768269    0.01267 |            .     |     .                       |   0.145549
              18   -114.418   -0.11357  |           .   **|     .                       |   0.145563
              19 -65.211117   -0.06473|           .    *|     .                       |   0.146626
              20  -3.510942   -0.00348 |            .     |     .                       |   0.146970
                                                     "." marks two standard errors



                                         Partial Autocorrelations

                        Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
                          1   -0.20599  |                ****|   .                |
                          2   -0.34858  |           *******|   .                |
                          3    0.02780  |                  .   |*  .                |
                          4   -0.03616  |                 .  *|   .                |
                          5   -0.15610  |                .***|   .                |
                          6   -0.06452  |                 .  *|   .                |
                          7   -0.26000  |              *****|   .                |
                          8   -0.21459  |               ****|   .                |
                          9   -0.09149  |                . **|   .                |
                         10   -0.09294  |               . **|   .                |
                         11   -0.14724  |               .***|   .                |
                         12    0.11120  |                 .   |** .               |
                         13    0.24885  |                 .   |*****            |
                         14    0.11414  |                 .   |** .              |
                         15   -0.00798  |                 .   |   .               |
                         16   -0.06103  |                .  *|   .               |
                         17    0.07968  |                 .   |** .              |
                         18   -0.00731  |                .   |   .               |
                         19   -0.02574  |                .  *|   .               |
                         20   -0.01489  |                    |   .               |

AR(1)
Estimates of the parameters were computed using two methods:  MLE and Least Squares.

The results are found below.

Parameter Estimate Std. Error

MLE µ -0.30911 2.85377
AR1,1 -0.21112 0.1100

Least Squares µ -0.30061 2.85539
AR1,1 -0.21011 0.10993

MA(1)
Estimates of the Moving Average model were obtained using two methods; MLE and Least Squares.

Parameter Estimate Std. Error

MLE µ -0.01804 1.71859
MA1,1                             0.49064 0.09976

Least Squares µ -0.02744 1.73327
MA1,1                              0.48592 0.10055

Remarks :  

The autocorrelation function (ACF) lists the estimated autocorrelation coefficients at each
lag. The value of the ACF at lag 0 is always 1. The dotted lines provide an approximate 95%



E yn#% " ŷn(%)
2

ŷn(%) ! E (yn#%) .

confidence limit for the autocorrelation estimate at each lag. If none of the autocorrelation
estimates falls outside the strip defined by the two dotted lines (and no outliers in the data) one
may assume the absence of serial correlation. In effect the ACF is a measure of how important the
sequence of distant observations ,... are to the current time series value . Y Yt t− −1 2, Yt

The partial autocorrelation function (PACF) is the ACF at lag p accounting for the effects of all
intervening observations. Thus the PACF at lag 1 is identical to the ACF at lag 1, but they are
different at higher lags.

VI.  FORECASTING

One of the most important objectives of time series analysis is to forecast the future values
of the series.  The term forecasting is used more frequently in recent time series literature than the
term prediction.  However, most forecasting results are derived from a general theory of linear
prediction developed by Kolmogorov (1939, 1941), Kalman (1960) and Whittle (1983) and many
others.

Once a good time series model has become available, it can be used to make inferences
about future observations.  What we mean by a good model is that identification estimation and
diagnostics have been completed.  Even with good time series models the reliability of the forecast
is based on the assumption that the future behaves like the past.  However, the nature of the
stochastic process may change in time and the current time series model may no longer be
appropriate.  If this happens the resulting forecast may be misleading.  This is particularly true
for forecasts with a long lead time.

Let yn denote the last value of the time series and suppose we are interested in forecasting
the value that will be observed % time periods (%>0) in the future; that we are interested in
forecasting the future value yn+%.  We denote the forecast of yn+% by ŷn(%), where the subscript
denotes the forecast origin and the number in parentheses denotes the lead time.  Box and Jenkins
(1970) showed that the "best" forecast of yn+% is given by the expected value of yn+% at time n,
where best is defined as that forecast which minimizes the mean square error

It should be noted that the above expectation is in fact a conditional expectation since, in general,
it will depend on y1,y2,...yn.  This expectation is minimized when

We now show how to obtain the forecast for the time series models AR(1), AR(2) and MA(1).



yt"µ ! φ (yt"1"µ) # at (5.73)

yt#1 " µ ! φ(yt"µ) # at#1 . (5.74)

E (yt#1)"µ ! φ E yt!yt,yt"1,...y1"µ

#E at#1 ! yt,yt"1,...y1 .

E(yt!yt,yt"1,...y1) ! yt

E(at#1!yt,yt"1,...y1) ! E(at#1) ! 0

ŷt(1) ! µ#φ(yt"µ) (5.75)

ŷt(%) ! µ#φ(yt(%"1)"µ) %'1 (5.76)

ŷt(%) ! µ#φ%(yt"µ) %'1 (5.77)

(1) AR(1) Model:

Consider the problem of forecasting 1 time unit into the future.  Replacing t by t+1 in
equation (5.73) we have

Conditional on y1, y2,...yt-1, yt, the expectation of both sides of (5.74) is 

Since

and 
     E y yt t( ) ! ( )+ =1 1

then

For a general lead time %, we replace t by t+% in equation (5.73) and taking the conditional
expectation we get

It is clear now that equation (5.76) is recursive in %.  It can also be shown that



ŷt(!) # µ for large !

et(1) ! yt"1#ŷt(1)

! µ"φ(yt#µ)"at"1# µ"φ(yt#µ)

! at"1

(5.78)

Var [et(1)] ! Var(at"1) ! σ2
a .

Var [et(!)] !
1#φ2!

1#φ2
σ2

a (5.79)

Var [et(!)] #
σ2

a

1#φ2
. (5.80)

yt#µ ! φ1(yt#1#µ)"φ2(yt#2#µ) " at

Since $φ$<1, we may simply have

Now let us consider the one-step ahead forecast error, et(1).  From equations (5.74) and (5.75)

This means that the white noise at+1, can now be explained as a sequence of one-step-ahead forecast
errors.  From (5.78)

It can be shown (see Abraham and Ledolter page 241; 1983) that for the AR(1)

and for large !

(2)  AR(2) Model:

Consider the AR(2) model

Setting t=t+! the above equation is written as



yt"! ! µ"φ1(yt"!#1#µ) " φ2(yt"!#2#µ)"at"!

yt"1 ! µ"φ1(yt#µ)"φ2(yt#1#µ)"at"1 (5.81)

E (yt"1) ! µ"φ1(yt#µ)"φ2(yt#1#µ)"E(at"1)

ŷt(1) ! E(yt"1)

! µ"φ1(yt#µ)"φ2(yt#1#µ)

ŷt(!) ! E[yt#!]

! µ"φ1(ŷt(!#1)#µ)"φ2(yt(!#2)#µ) !"3
(5.82)

et(!) ! yt(!)#ŷt(!)

Var et(!) ! σ2
a 1"ψ2

1"ψ
2
2"...ψ2

!#1 (5.83)

ψ1 ! φ1, ψ2 ! φ2
1 " φ2

For the one-step ahead forecast (i.e. !=1)

From the observed series, yt and yt-1 are the last two observations in the series.  Therefore, for given
values of the model parameters, the only unknown quantity on the right-hand side of (5.81) is at+1.
Therefore conditional on yt, yt-1,...y1 we have

By assumption, E(at+1) = 0, and hence the forecast of yt+1 is

where µ, φ1, and φ2 are replaced by their estimates.  In general we have

The forecast error is given by

For !=1

where



ψj ! φ1ψj#1 " φ2ψj#2 j"2

Var et(1) ! σ2
a 1"φ2

1"(φ2
1"φ2)

2 (5.84)

yt ! µ"at#θat#1

yt"! ! µ"at"!#θat"!#1 . (5.85)

ŷt(!) ! µ"at"!#θat"!#1 (5.86)

and

For ! = 1

(see Abraham and Ledolter, page 243)

(3)  MA(1) Model:
In a similar manner we show how to forecast an MA(1) time series model

First we replace t by t+! so that

Conditional on the observed series we have

because for !>1 both at+! and at+!-1 are independent of yt, yt-1,..., y1. Hence

ŷt(!) =             µ                                  !>1
!

 µ-θat !=1

Var(et(!)) = σa
2(1+θ2) !>1 (5.87)

!
!a

2 !=1

The above results allow constructing (1-") 100% confidence limits on the future
observations yt+! as



ŷt(!) ± Z1#α/2 Var(et(!)) (5.88)

Example 5.8

Again, using the SCC data of example 5.1, we can compute forecasts for the variable by
employing the time series programs in SAS.  The estimates and 95% upper and lower confidence
values are given below.

observation forecast std. err. lower 95% upper 95%
       85 289.126  31.42   227.54                  350.72
       86 286.83  40.03   208.38                  365.27
       87 286.94  47.83   193.19                  380.69
       88 286.54  54.39   179.93                  393.14
       89 286.25  60.27   168.12                  404.37

VII.  MODELING  SEASONALITY WITH ARIMA:
The condemnation rates series revisited.

The ARIMA models presented in this chapter assume that seasonal effects are removed,
or that the series is non-seasonal. However, in many practical situations it is important to model
and quantify the seasonal effects. For example, it might be of interest to poultry producers to know
which months of the year the condemnation rates are higher. This is important in order to avoid
potential losses if the supply falls short of the demand due to excess condemnation.

Box and Jenkins (1970) extend their ARIMA models to describe and forecast time series
with seasonal variation. Modeling of time series with seasonal variation using ARIMA is quite
complicated and detailed treatment of this topic is beyond the scope of this chapter. However, we
shall outline the steps of modelling seasonality in the condemnation rates data of example (5.4).

First we examine the monthly means of the series (Table 5.6):

Table 5.6
Monthly Means of Condemnation Rates per 100,000 Birds

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

mean
rate

932.58 916.13 921.98 772.98 603.37 509.54 497.01 520.03 618.73 585.96 771.76 692.69

The data suggest that condemnation rates tend to be relatively high in the winter and low in the
summer. Figure 5.11 shows the sample ACF of the series for lags 1 through 21.
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Figure 5.11   The autocorrelation function of the rate.

The sample autocorrelations beyond lag 13 are insignificant. Moreover, we can see that
(i) the autocorrelations are not tailing off, which indicates that the series is nonstationary (ii) there
is a sinosoidal pattern confirming a seasonal pattern in the series. Note that an AR(1) series

 is nonstationary if  = 1. To confirm the nonstationarity of our series, wey yt t t= + +−µ φ ρ1 φ
fitted an AR(1) model. The MLE of  was  = 0.961 with SE = .03, and hence a value of 1.0φ !φ
for  seems acceptable. To remove nonstationarity, we formed the series . Figureφ w y yt t t= − −1

5.12 is the time series plot of . w t

Figure  5.12 Time-series plot of the differenced series of rates.



The plot shows that the series is oscillating around a constant mean. 

In modeling seasonality we decided to choose between two models; the first is an MA with
one non-seasonal component and several seasonal components, the second being an AR with
similar structure.

Since the series is monthly, it has 12 periods. Accordingly we constructed the series with
12 periods of differencing. The ACF plot of this series is given in Figure 5.13. 

                                Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
  0  65929.434    1.00000  |                    |********************|
  1 -19692.471   -0.29869  |              ******|    .               |
  2   6127.668    0.09294  |               .    |**  .               |
  3  -8942.191   -0.13563  |               . ***|    .               |
  4  -5593.375   -0.08484  |               .  **|    .               |
  5   -817.122   -0.01239  |               .    |    .               |
  6  -1354.484   -0.02054  |               .    |    .               |
  7    260.957    0.00396  |               .    |    .               |
  8  13738.889    0.20839  |               .    |****.               |
  9  -6842.945   -0.10379  |               .  **|    .               |
 10   6180.334    0.09374  |              .     |**   .              |
 11  -1751.808   -0.02657  |              .    *|     .              |
 12 -20075.614   -0.30450  |              ******|     .              |
                           "." marks two standard errors

Figure 5.13 Autocorrelation plot of condemnation data.

This plot shows significant autocorrelations at lags 1,3,8, and 12. 

The candidate models for this situation is an additive AR model:

 y y y y y at t t t t t= + + + + +− − − −µ φ φ φ φ1 1 2 3 3 8 4 1 2

or an additive MA model:

.y a a a a at t t t t t= + − − − −− − − −µ θ θ θ θ1 1 2 3 3 8 4 1 2

Our choice of an additive structure is for simplicity. The fitted seasonal AR model is 

= -16.26 - .278 - .109 - .170 -.303y t y t −1 y t −3 y t −8 y t −1 2

                                (18.18)   (.117)       (.117)      (.116)        (.127)



and the fitted seasonal MA model is 

= -15.38 - .260 - .175 -.165 -.467y t ε t −1 ε t −3 ε t −8 ε t −1 2

                                (12.21)   (.115)        (.116)      (.116)       (.112)

The bracketed numbers are the standard errors of the estimates. Parameters of both models were
estimated via conditional least squares.

As a diagnostic tool that may be used to check the model adequacy we use the Q statistic of Box
and Pierce (1970), later modified by Ljung and Box (1978). They suggested a test to contrast the
null hypothesis

H k0 1 2 0: . . .ρ ρ ρ= = = =

against the general alternative

 not all  = 0.H 1: ρ j

Based on the autocorrelation between residuals, they suggested the statistic

where is the length of the series after any differencing and  is the residual autocorrelation atn r j

lag j. Box and Pierce (1970) showed that under ,  is asymptotically distributed as chi-H 0 Q
squared with (k-p-q) degrees of freedom. Typically, the statistic is evaluated for several choices
of . Under , for large  k H 0 n

( ) ( )[ ]E Q k Q k k k2 1 2 1− = −

so that different sections of the correlogram can be checked for departures from .H 0

Tables 5.7 and 5.8 give the Box-Pierce-Ljung (BPL) statistics for the condemnation rates using
the AR and MA models.

Q Q k n n r n jj

j

k

= = + −
=

∑( ) ( ) / ( )2 2

1



Table 5.7
BPL Statistic Using AR Seasonal Model

Lag(k) ( )Q k df Prob Autocorrelations   r j

6
12
18
24

1.16
1.82
5.26
15.80

2
8
14
20

0.559
0.986
0.982
0.729

-0.018    -0.014   -0.049   -0.093   -0.035   -0.046
 0.006     0.023    -0.003    0.070    0.006   -0.046
 0.178    -0.034     0.034   -0.061    0.021    0.009
-0.072     0.003     0.158   -0.014    0.198   -0.171

p = 4, q = 0, df = k - 4

Table 5.8
BPL Statistic Using MA Seasonal Model

Lag(k) ( )Q k df Prob Autocorrelations   r j

6
12
18
24

0.68
1.94
5.61
13.17

2
8
14
20

0.712
0.983
0.975
0.870

0.008     0.042    0.029    -0.063    -0.016    -0.043
0.016    -0.002   -0.049     0.098     0.001     0.050
0.178    -0.046    0.052    -0.055     0.037     0.003
-0.042    -0.011    0.166     0.004     0.189    -0.076

p = 0, q = 4, df = k - 4

Note that all the  statistics of the two models are non-significant. This means that the modelsQ
captured the autocorrelation in the data, and that the residual autocorrelations are non-significant.
Therefore, both models provide good fit to the condemnation rates times series process. However,
we might argue that the MA seasonal model gives a better fit due to the fact that it has smaller
Akaike information criterion (AIC = 978.07 for the MA, and AIC = 982.25 for the AR).

The following SAS program produces the parameter estimates, the  statistics and theQ
AIC’s.

PROC ARIMA;   /*MA seasonal model*/
i var = rate (1,12) nlag = 12;
e q(1,3,8)(12);
run;

Note that q(1,3,8) is replaced by p(1,3,8) to fit an AR seasonal model. 



yit ! µ"αi"uit (5.89)

uit ! φuit#1"ait i ! 1,2,...k

t ! 1,2,...n

F !

kn(n#1) "
k

i!1
(y i#y..)

2

(k#1) "
k

i!1
"

n

t!1
(yit#yi.)

2

(5.90)

VIII.  THE ONE-WAY AND TWO-WAY ANALYSIS OF VARIANCE 
WITH TIME-SERIES DATA

A.  INTRODUCTION

In the previous sections we introduced and discussed some of the statistical properties of
the most widely known time series models.  We have also shown, through examples, their use in
the analysis of time series arising from observational studies.  This section discusses the problems
of estimation and inference in experimental time series.  These series appear in situations where
an investigation is repeated over time.  For example, in field trials that are aimed at assessing the
weight gains of animals randomized into groups, each group represents a specific diet; repeated
measures of weight constitute an experimental series.  The observations (weights) forming a time
series are characterized by a high degree of correlation among contiguous observations, therefore,
comparing the group means cannot be routinely analyzed by ANOVA methods.

We shall focus our attention on the analysis of experimental time series (ETS) data under
the one-way ANOVA with error variables forming an AR(1) and with the autoregression
parameter # assumed common among all the groups.  Furthermore, when the time is considered
a specific factor, a two-way ANOVA methodology is discussed and an example will be given.

B.  ONE-WAY ANOVA WITH CORRELATED ERRORS

Consider the fixed effects models

where yit is the observation at time t due to the ith treatment, µ is an overall mean, "i is the effect
of the ith treatment, and uit is a component of an AR(1) process with

where ait are iid N(0,!a
2), and $#$<1.  For the usual ANOVA model yit=µ+"i+ait, we test the

hypothesis H0:"1="2=...="k=0 using the well-known F-statistic,
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F $ !
c2(φ̂)

c1(φ̂)
F (5.91)

c1(φ) !
1

(1#φ)2
1# 2φ(1#φn)

n(1#φ2)

c2(φ) !
1

n#1
n

(1#φ)2
# c1(φ)

c1(φ̂)

c2(φ̂)
.

c1(φ̂)

c2(φ̂)
Fα,k#1,k(n#1),

where 

For the model (5.89) the statistic given in (5.90) is inappropriate because of the dependency among
the observations within each treatment.

Recently Sutradhar et al. (1987) proposed the corrected  F-statistic

for testing H0: "1="2 = ... = "k=0 where
and

The hypothesis is rejected for large values of F*.  For fixed #, they expressed the
probability distribution of F* as a linear combination of independent central chi-square
distributions.  In theory, one can find the exact percentage points of this statistic, however, one
should be able to provide the value of  and hence that of the correction factor,φ̂

For practical purposes, we may reject the hypothesis when the value of F given in (5.90) exceeds
that of 

where F", k-1, k(n-1) is obtained from the F-tables at " level of significance and (k-1, k(n-1)) degrees
of freedom.  The estimate  may be any consistent estimate of # such as the MLE given in (5.71)φ̂
pooled over all treatments.



yit ! αi"βt"uit , i ! 1,2,...k

t ! 1,2,...n
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C.  TWO-WAY ANOVA WITH CORRELATED ERRORS

In the one-way ANOVA with correlated errors we ignored time as a factor.  While the
primary interest is the comparison between treatments in this section we shall account for time,
so that the postulated model is given by 

where "i and uit are as defined previously for the one-way ANOVA, and $t is the time effect.

Here we assume that series of observations yit on a variable, made at n distinct time points are
available from k treatments.  It is also assumed that the rows of the matrix uit are iid, and each row
is assumed to be distributed as n random variables from a stationary Gaussian process with mean
0

Time (columns)

1 2 .......... n Total

Treatment
(rows)

1
2
.
.
.
k

y11

y21

yi1

yk1

y12

y22

yi2

yk2

y1n

y2n

yin

ykn

y1.

y2.

.

.

.
yk.

y.1 y.2 y.n

This model has been investigated in an important paper by Box (1954), in which exact formulae
for the tail probabilities of the usual F-test were given.  An approximation to the distribution of
the F-test statistic for the hypothesis of no time effect ($t is constant) is

where
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"

n

t!1
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2
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k
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# F %
f ,(k#1) %

f

SS (Columns)/(n#1)
(SS (Residuals)"SS (Rows))/(k#1)n

# dc F %
f ,(k#1)f

and

Box concluded that the test of no column effects was not seriously affected by the presence
of serial correlations.  Moreover, the test of no row effects was affected essentially as a
consequence of the serious effect on the variance of a mean by serial correlation.  However, Box
did not go into the details of investigating the validity of the approximation.  Furthermore, he did
not consider the analogous approximation to the distribution of the F-test statistic of the hypothesis
H0:"1="2=...="k , presumably because the two sums of squares involved are, in general,
dependent.

More recently Andersen et al. (1981) studied approximations on the hypothesis
H0:$1=$2=...=$n and H0:"1="2=...="k for the model (5.92) under two types of stationary
Gaussian processes, AR(1) and MA(1). The approximate tests developed by Andersen et.al. are
outlined below.

In addition to the sums of squares given in (5.93) we define the sum of squares of row
effects as

(a)  To test for no column effect  H0:$1=$2=...=$n  under the model E(yit)="i+$t (i.e.
in the presence of row effect) use the approximation

and in testing the hypothesis  H0:$1=$2=...=$k  under the model E(yit)="+$t (i.e. in the absence
of row effect) use the approximation

(b)  To test for no row effect  H0:"1="2=...="k  under the model E(yit)="i+$t (i.e. in
the presence of column effect) use the approximation
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and in testing the hypothesis  H0:"1="2=...="k  under the model E(yit)="i+$ (i.e. in the absence
of column effect) use the approximation

where F{a,b} is the  F-statistic with a and b degrees of freedom.  Note that dc, dr, f, and  depend!f
on the parameters of the underlying stationary Gaussian processes.  Anderson et al (1981) gave
the values of these quantities for the AR(1) and MA(1) models.  For AR(1) N(0,1), we have

where

and
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The constant ai, bi, and ci are obtained from the following table:

i ai bi ci

0
1
2
3
4
5
6

n2(n-1)
-2n(n2+n-2)
n3-n2+4n+4
8(n2+1)
-n3-n2-4n+4
2n(n2-n-2)
-n2(n+1)

 ----
-4n(n+1)
-8(n+1)
8(n2-2)
8(n-1)
-4n(n-1)
 ----

 ----
 ----
2(n2+2n+2)
-4(n2-2)
2(n2-2n+2)
 ----
 ----

To find the moment estimates of the parameters of the AR(1) process, Anderson at el. defined,
for the model  yit="i+$t+uit with uit=# uit-1+ait, where ait are iid N(0,!2), the residuals Ri,t=yit-
ȳi.-ȳ.t+ȳ.. .  

Using the statistics

and

the moment estimators are



Example 5.9 

The arrthymogenic dose of epinephrine (ADE) is determined by infusing epinephrine into a dog
until arrhythmia criteria are reached.  The arrhythmia criteria were the occurrence of 4
intermittent or continuous premature ventricular contractions.  Once the criterion has been
reached, the infusion required to produce the criteria is recorded.  The ADE is then calculated on
multiplying the duration of the infusion by the infusion rate.  The following table (Table 5.9) gives
the ADE for 6 dogs, measured at the 0, ½, 1½, 2, 2½, 3, 3½, 4 and 4½ hours.

Table 5.9
ADE in Dogs

Time

Dog 0 ½ 1 1½ 2 2½ 3 3½ 4 4½

1
2
3
4
5
6

5.7
5.3
4
13.7
5
7.1

4.7
3.7
4.6
8.9
4
3

4.8
5.2
4.1
9.6
4.1
2.4

4.9
4.9
4.58
8.6
3.9
3.3

3.88
5.04
3.58
7.5
3.4
3.9

3.51
3.5
4.0
4.0
3.39
4.0

2.8
2.9
3.6
3.1
2.95
3

2.6
2.6
2.5
4.1
3.0
2.4

2.5
2.4
3.5
4.08
3.1
2.1

2.5
2.5
2.1
3.0
2.0
2.0

Here we analyze the data under a two-way ANOVA, assuming that the error term follows an
AR(1) process.

i)   First of all a two-way ANOVA is run in testing
H0: no dog effect
H0: no time effect

The results obtained from SAS Proc ANOVA show that both these hypotheses are rejected.

Source df F value Pr>F
dog 5 10.10 0.0001
time 9  7.18 0.0001
error 45

ii)  Then we proceed with the computation of  and  by first calculating Ri,t, &(t,t+1), &(0)!φ !σ a
2

and , followed by the calculation of dr, dc, f, .  These are!ρ1
~
f



dr ! 4.7541

dc ! 0.7280

f ! 4.8332

"f ! 5.1303

iii)  Now we must adjust the degrees of freedom of the F statistics for testing the null hypotheses,

i)  H0:  no time effect
ii) H0:  no dog effect

So that for,
 

i)  the degrees of freedom for the F0.05 corrected are 5 and 5*5.1303.  This F value (with
fractional degrees of freedom) is 2.59.

Our calculated F value is 7.18, thus we have reason to reject the null hypothesis implying
that there is a time effect in the presence of group effect.

and then,

ii)  the corrected F is 

 F.05, 5, 5*5.1303)*4.7541 = 2.59*4.7541  =  12.313  

against which we compare our calculated F value of 10.1.  Here there is no reason to reject the
null hypothesis which implies that there is no dog effect in the presence of the time effect.

The overall conclusion is that all dogs react consistently through time, but that there is a
significant time effect.  This suggests that the ADE varies over time.



Chapter 6 

REPEATED MEASURES ANALYSIS 

I. INTRODUCTION 

Experimental designs with repeated measures over time are very common in biological and 
medical research. This type of design is characterized by repeated measurements on a relatively 
large number of individuals for a relatively small number of time points, where each individual is 
measured at each time. The repeated measures design has a clear advantage over completely 
randomized designs. This is because by measuring individuals repeatedly over time, one can control 
the biological heterogeneity between individuals. This reduction in heterogeneity makes the repeated 
measures design more efficient than completely randomized designs. 

Repeated measures are very frequent in almost all scientific fields, including agriculture, 
biology, medicine, epidemiology, geography, demography and many other disciplines. It is not the 
aim of this chapter to provide a comprehensive coverage of the subject. We refer the reader to the 
many excellent texts such as Crowder and Hands (1 990) and Lindsay (1993) and many articles that 
have appeared in scientific journals (Biometries andStatistics in Medicine). In the following section 
we provide examples of repeated measures experiments that are frequently encountered. In section 
I11 we describe the statistical methodologies that are used to answer the scientific questions posed. 
In section IV we illustrate how the "generalized estimating equations" technique is used to analyse 
repeated measures or longitudinal studies that include covariate effects. 

11. EXAMPLES 

A. "EFFECT OF MYCOBACTERIUM INOCULATION ON WEIGHT" 

The following experiment was conducted in a veterinary microbiology lab. Its main objective 
was to determine the effect of mycobacterium inoculation on the weight of immunodeficient mice. 
Severely immunodeficient beige mice (6-8 weeks old) were randomly allocated to the following 
groups: 

Groups 1 : Control group where animals did not receive any inoculation. 

Groups 2: Animals were inoculated intraperitoneally with live mycobacterium paratuberculosis 
(MPTB) and transplanted with peripheral blood leucocytes (PBL) from humans with 
Crohn's disease. 

Groups 3: Animals were inoculated with live MPTB and transplanted with PBL from bovine. 



In each group the mice were weighed at baseline (week 0), at week 2 and week 4. The data are given 
in 

The question of interest concerns differences between the mean weights among the three 
groups. 

Table 6.1 
Weights in Grams of Inoculated Immunodeficient Mice 

Group 

1 

2 

3 

Time in weeks 

Mice 0 2 4 

1 28 25 45 
2 40 31 70 
3 31 40 44 
4 27 21 26 
5 27 25 40 
6 34 25 38 
7 36 31 49 
8 41 21 25 
9 28 22 10 
10 29 24 22 
1 1  31 18 36 
12 31 15 5 
13 28 28 61 
14 27 23 63 
15 31 30 42 
16 19 16 28 
17 20 18 39 
18 22 24 52 
19 22 22 25 
20 28 26 53 

B. VARIATION IN TEENAGE PREGNANCY RATES (TAPR) IN CANADA 

shows teenage pregnancy rates (per 1000 females aged 15-1 7 and 18-1 9). These 
rates include live births, therapeutic abortions, hospitalized cases of spontaneous and other 
unspecified abortions, and registered stillbirths with at least 20 weeks gestation at pregnancy 
termination. (Source: Health Report; Statistics Canada 1991, Vol. 3, No. 4). The Newfoundland 
data are not included. It is important to detect variations regionally and over time in TAPR. 

Table 6.1

Table 6.2



Table 6.2 
Teenage Pregnancy Rates per 1000 Females Aged 15-17 and 18-19 

I I I 

18-19 
1980 15-17 

18-19 
15-17 
18-19 

1989 15-17 
18-19 

East 

PEI 

41.6 
96.6 
28 
59.6 
20.3 
64.5 
21.1 
60.5 

I Went 

98.6 103.7 43.4 91.5 98.8 116.1 120.9 102 

i::: 1 ;3”:: 1 1 1 iii 1 ;:26 
28.6 21.6 37.9 
65.8 59.5 37.7 88.4 
30.8 22.6 16.6 27.2 40.5 37.7 
69.4 56.4 48.0 64.8 96.9 95.0 

43.2 41.0 
111.4 89.4 
34.5 29.9 
85.8 72 
34.4 31.6 
87.6 77.2 

Territories 

109.3 

PEI = Prince Edward Island, NS = Nova Scotia, NB = New Brunswick, QU = Quebec, 
ONT = Ontario, MAN = Manitoba, SASK = Saskatchewan, ALTA = Alberta, BC = British Columbia, Y = Yukon, 
NWT = North West Territories 

111. METHODS FOR THE ANALYSIS OF REPEATED MEASURES EXPERIMENTS 

UNIVARIATE ANALYSIS OF VARIANCE OF REPEATED MEASURES EXPERIMENTS 

There are two approaches for the analysis of repeated measures data, the first derived from 
the general setting of the linear mixed model which is known as Univariate Analysis of Variance, 
and will henceforth be referred to as ANOVA. The second approach attempts to use the multivariate 
normal model as the joint distribution of the measurements over time, and is known as Multivariate 
Analysis of Variance, or MANOVA. 

The main focus of this section is to provide the researcher with the most practical procedure 
for the analysis of repeated measures data. It will be shown that in some situations the scientific 
question can be answered by employing just the ANOVA, while in other situations one may use both 
ANOVA and MANOVA procedures. 

A. BASIC MODELS 

Suppose that observations are obtained on n time points for each of k subjects that are 
divided into g groups, with ki subjects in the ilh group. 

Let yij denote the jth measurement made on the ith subject. The approach to analysing data 
from the type of repeated measures designs that will be considered in this chapter is to proceed as 
in a linear mixed model analysis of variance. Therefore, the components of variation in yij are such 
that 



y. .  r/ = p..+a..+e.. ! I V Y  ( 6 . 1 )  

where 
(i) pll is the overall mean response of the ith individual measured at the jth time point. The pij is 

called the fixed effect because it takes one unique value irrespective of the subject being 
observed and irrespective of the time point. 

(ii) the aij represent the departure of yij from pij from a particular subject; this is called a random 
effect. 

(iii) ell is the error term representing the discrepancy between ylJ and plJ + alJ. 

Further to the above set-up, some assumptions on the distributions of the random components of the 
mixed model (6.1) are needed. These assumptions are 

A. E (a,) = E (e,) = 0, 
Var (a,) = u:, and Var (e,) = u:. 

It is also assumed that Cov (alJ, aI',') = 0 and Cov (alJ, alJ')=o,2. 

B. Cov (eij, eiY) = 0 i+i' or j+j'. 

C. The random effect aij is uncorrelated with ell. 

D. a, and e, are normally distributed. 

Consequently, it can be shown that the covariance between any pair of measurements is 

Therefore, any pair of measurements on the same individual are correlated, and the correlation is 
given by 

2 
0, Corr (y,yi,,) = p = - 

om +oe 
2 2  ( 6 . 3 )  



which we have already discussed in Chapter 2 (known as the intraclass correlation). The 
assumptions of common variance of the Observations and common correlation among all pairs of 
observations on the same subject can be expressed as an nixni matrix 1, where ni is the number of 
observations taken repeatedly on the ith subject and 

where o2 = U: + U: . 

A matrix of the form (6.4) is said to possess the property of compound symmetry or uniformity 
(Geisser, 1963). It is also assumed that the variance-covariance matrices associated with each level 
of group m, Em, being common to all g groups (i.e., Em = 1). 

Unfortunately, the data obtained in many experimental settings (e.g., longitudinal) rarely 
satisfy the assumption of compound symmetry. In such designs, it is common to find that the 
adjacent observations or successive measurements on adjacent time points are more highly correlated 
than non-adjacent time points, with the correlation between these measurements decreasing the 
further apart the measurement. 

It should be noted that the assumptions of compound symmetry of C and homogeneity of 
Ern's are sufficient, but not necessary, conditions for the F-statistics to be exact in the repeated 
measures ANOVA. 

The effects of heterogeneity of 1;s was first realized by Kogan (1 948) who suggested that 
positive intraclass correlations between measurements on time points would result in a liberal F-test 
of the time effect. 

In the next section, the recommended approach to hypothesis testing in repeated measures, 
including situations when the compound symmetry and homogeneity conditions are not satisfied, 
will be discussed following recommendations made by Looney and Stanley (1989). 

B. HYPOTHESIS TESTING 

Looney and Stanley (1 989) recommended that hypothesis testing in the repeated measures 
experiment proceeds as follows: 



(H-I) Test for no group by time interaction or HgxT. 
(H-2) Test for no group effect, or H,. 
(H-3) Test for no time effect, or H,. 

Looney and Stanley (LS) emphasized the importance of the hierarchical nature of the tests 
HgxT, H,, and H,; namely, HgxT must always be tested first. If HgxT is supported based on the data 
(i.e., there is no group by time interaction) then one proceeds to test H, (no group effect) and H, (no 
time effect). On the other hand, if H,, is not supported by data, then the presence of significant 
interaction would require change in the strategy ofhypothesis testing (Harris, 1975, p. 8 1). This does 
mean that tests for group differences and time effect cannot be performed, but alternative techniques 
for testing H, and H, should be followed. Before we outline LS recommendations, we give a brief 
literature review of the methods proposed to adjust the F-statistic to account for the departure of the 
variance-covariance matrix from compound symmetry. 

1. Adjustment in the Two-way ANOVA 

Perhaps the most effective way of explaining the technical procedures suggested by 
statisticians, to adjust the standard F-test, is through an example. For this we look at the ADE data 
given in Chapter 5. The general data layout would be as in 

Table 6.3 
General Data Layout 

Time 

Subject I 2 3 . . . . . . . n 

1 Y I I  Y l 2  

2 Y21 Y22 

YI" 

Y l n  

k Y k l  Yk2 Y kn 

The two-way ANOVA for this data is summarized in 

Table 6.4 
ANOVA of Two-way Design 

S.O.V. d.f s.0.s 

Subjects 

Time 

Error 

k- I 

n- 1 

(k- 1 )(n- 1) 

Table 6.3

Table 6.4



exceeds SSBTIn - 1 
SSEl(k-l)(n-1) 

From the standard ANOVA, the "no time effect" is rejected if 

C = 

a,(n-i), (k-l)(n-i). 

4 1.5 0.5 
1.5 4 3 
0.5 3 2.5 

The above test statistic is only valid if the covariance homogeneity is satisfied. That is, if the 
covariance matrix of the within-subjects measurements is the same for all subjects. 

Box (1954b) and Imhof (1962) found that as the degree of covariance homogeneity 
decreased, the within-subj ect F-test became increasingly liberal. 

In order to circumvent the problem associated with violating the compound symmetry 
assumption, various adjustments have been made. 

Box (1 954b) demonstrated that under the hypothesis H, (no time effect), the true distribution 
of the F-statistic is no longer Fa,n-l(k-,)(n-l), but rather is approximately given by: 

F ,  = Fa, ( P I ) €  , ( k I ) ( W l ) €  

where the correction factor, E (see equation [6.5]), depends on the elements of the variance- 

covariance matrix 2. When the n variances and covariances are constant, that is, when C is 

of compound symmetry, E equals its upper bound of unity and Box's (1954b) approximation yields 
exact results. However, as C departs from uniformity (compound symmetry), the value of E 

I n )  
decreases from one, and F, is distributed with a decreased 
correction factor E is given by 

n '(GJ, -G)' 
€ =  r 

To show how E is calculated, for example, let 

number of degrees of freedom. The 

( 6 . 5 )  



Here, 
- - 4+4+2.5 = 3.5 

3 ' - 
n = 3  

- 1  u = - [4+1.5+0.5+1.5+4+3+.5+3+2.5] = 2.28 
9 

- 4+1.5+.5 
0, = 

- .5+3+2.5 = - 1.5+4+3 = 2.83 &J3 = = 2 ,U2 = 
3 3 3 

and 

9(3.5 -2.28)2 
E =  

2 [77.25 -6(22+2.832 +22) +9(2.28)'] 

= 0.48 

In designs with more than two factors, Geisser and Greenhouse (1 958) and Greenhouse and 
Geisser (1 959) extended the work of Box (1 954b) to the analysis of groups by time, showing that 
the F ratio for the tests on H, and HgxT could be adjusted by the same approximate method. 
Moreover, these authors showed that for designs with data layout as in , the lower bound 
of E was equal to (n-l)-'. Thus, 

- < E L 1  1 
n-1 

Geisser and Greenhouse's (1 958) results can be extended to mixed models, where one of the factors 
is "subjects" subdivided into groups and the remaining factors are fixed. We shall investigate the 
circumstances under which the F ratio in question needs to be adjusted as we move along in the 
chapter examining each of the examples discussed in section 11. 

C. RECOMMENDED ANALYSIS FOR EXAMPLE A 

In this data set we have three groups; subjects (mice) are nested within groups, and each 
mouse has been measured on three occasions. 

The linear model upon which the analysis will be based has the following structure: 

Table 6.3



The notation SjCi, indicates that the effect of subject j is nested within the ith level of group Gi, T, is 
the time effect, GT is the group by time interaction, and TS is the time by subject interaction; e is 
the error term ( 1. 

Table 6.5 ANOVA of Table 6.1 

S.O.V. df S.O.S. EMS 

Gi 2 g- 1 Between groups a: + 3a: + 18 $82 
Tk 2 (n- 1) Time effect a: + 42Ts + 18 4: 
(GT)ik 4 (g- 1 )(n- 1) Group by time interaction a: + uZTs + 642,, 

'j(i) 15 g(k-1) Subjects within groups u,2 + 3u: 

TSkj(i) 30 g(k-l)(n-1) Time x subject (group) a: + dTS 
€m(ijk) 0 Error 0: 

The EMS column is easily obtainable by following Cornfield-Tukey algorithms (see Winer, 
1972, p. 371). This column aids in determining the error term needed to compute the F-test on the 
hypothesis in question. 

Step 1 

Following Looney and Stanley (1 989), the first step in the exploratory analysis is to test HgxT 
or no group by time interaction. From the EMS table the test statistic is 

(Group * Time Sum of Squares)/(g-l)(n-1) 
FFT = Time * Subject within Groups Sum of Squares)/g(k-1) ( 6 . 8 )  

where g number of groups 
n number of occasions 
k z number of subjects within each group 

which is compared with F.,(s-,)(n.,),s(,-,Xn-l). If the FgxT given in (6.8) is not significant using the 
unadjusted degrees of freedom, then the result also would not be significant using any adjusted 
degrees of freedom and the test stops here. If the calculated F,, is significant using the unadjusted 
degrees of freedom, then HgxT is tested using the adjusted F-test given as 

Remark 

Greenhouse and Geisser (1959) suggested setting E at its lower bound, ~ . This 
n-1 

Table 6.5



produces a very conservative test and the resulting Fu,(g-l),,(k-l), instead of the degrees of freedom 

indicated in (6.9). Setting E equal to its lower limit tends to make the test procedure 

extremely conservative relative to using the F-ratio suggested in the ANOVA table. Monte Car10 
studies carried out by Collier et al. (1967) indicated that the usual tests suggested by the ANOVA 
tend to give results closer to the nominal level of significance than do results under the Greenhouse- 
Geisser (1 959) conservative approach, provided that the degree of heterogeneity of the covariances 
is relatively moderate. 

Step 2: (A) 

What do we do when HgxT (no significant groap by Time interaction) is not rejected before 
or after adjusting the degrees of freedom of the F-statistic? 

If HgxT is not rejected, then H, and H, can be accomplished by performing tests on the 
marginal means. For testing no time effect (H,) and if the matrix C satisfies the required pattern, 
then we compare the standard F-ratio (based on the EMS rule) 

(Time Sum of Squares)/(n-1) 
(Time * Subject (Group) Sum of Squares)/g(k- l)(n - 1) 

F ,  = 

with 

(6.10) Fa;(n-  I ) & -  I)(n- I )  

However, if the covariance matrix departs from the given requirement, the Greenhouse- 
Geisser procedure calls for using the critical values 

Fa;+ I)e,g(k- I )+  I)E (6.11) 

instead of (6.10). 

Remarks 

1. Setting E = l/(n-1) gives avery conservative test and the resulting critical value is Fu:,.g(k.,). 

2. We may now wish to make comparisons between time means, noting that there is no 
significant group by time interaction. 

To investigate a contrast between time means 



where f,,i  is the estimated i'h time mean with estimated standard error given by 

( 6 . 1 2 )  
time*subject(group) sum of squares/g(k-l)(n-1) c c2 

gk i =  1 
SE( f j t )  = 

Two important inference procedures based on the sampling distribution of ijT can be constructed: 

(i) To test the hypothesis 

H, : qr = g c, p,,; = 0 , [ 2 c;=O] 
i = l  i = l  

versus H,:qt + 0, one may use the F-statistic 

which is compared to Fa,,,vn, where v, = g(k-l)(n-1); the degrees of freedom of the error term "Time 
* Subject (Groups)" sum of squares. 

(ii) One may also construct (1-a) 100% confidence interval about q, which is 

i l l - ( 6 . 1 3 )  

(iii) It should be noted that if there is interest to construct simultaneous tests of the contrasts 
among the marginal time means, one can apply Bonferroni's approach to control the overall level of 
significance. For instance, since in the example being discussed we have 3 time points: 0,2, and 
4 weeks, if we are to compare the mean response at time 0 to time 2 and time 4; and time 2 to time 

=3. In this case, one has to divide the level of 4 then the number of pairwise comparisons is 

significance associated with the F-test (6.13) by . That is, one should test at a' = 1x13. (:I 
3. We may wish to make comparisons between group means, noting that there is no 
significant group by time interaction. 



A contrast between group means can be written as 
- - - E, = CI Y I . . + C 2  Y2. .+-Cg Y ,  

where yi,, is the estimated i'h group mean. The estimated standard error of <, is given by 

9 c ; .  Subjects (Group) Sum of Squares / g(k - I )  
kn 1 = l  

si ti,) = 

Similarly, such a contrast can be used to: 

(i) Test the hypothesis 

versus H,:g+O using the F-statistic 

(6.14) 

which is compared with Fa,,,vg, where v,=g(k-I) are the degrees of freedom associated with the error 
term "Subject (Groups)" sum of squares. 

(ii) One may also construct a (I-a) 100% confidence interval about 5 ,  which is 

(6.15) 

(iii) 
Bonferroni's approach. 

Construction of simultaneous tests of the contrasts of interest can be applied following 

Step 2: (B) 

What do we do when HgxT (no significant group by time interaction) is rejected? That is, we 
have significant group by time interaction. 

If HgxT is rejected, then it is not appropriate to test either H, or H, as we suggested. One 



alternative is to attempt to find a transformation of the multivariate data so that the test of HgxT using 
the transformed data is no longer significant, as was suggested by Andrews et al. (1971). If such a 
transformation can be found, we may then proceed as in Step 2: (A). We do not recommend 
transforming the data, but rather recommend the procedure suggested by Morrison (1976, p. 208). 
Morrison suggested that one tests the hypothesis of equal group means separately for each time point 
using the usual ANOVA test. Similarly, test the hypothesis of equal time means for each group. 

(a) Testing equality of time means at each group. Let 8, denote the contrast between time 
means at the same group. Then 

where 
n 

i = l  

the estimated standard error of 0, is given by 
I 

Time * Subject (Group) Sum of Squares/g(k- l)(n - 1) 2 ci 2 . sk (bT) = 
k i = l  

Before we construct test statistic and confidence intervals on the appropriate contrasts one should 
realize that for a test of overall size a, it is suggested that a'=alg be used for tests of the time effects 
at each group. 

We can now test the hypothesis 

H,: 8,=0 versus H,:  eT+0 

by comparing the statistic 

to Fa* ,,,"" where v,=g(k-l)(n-I). 

(b) To compare two group means at the same time. For test of size a, it is suggested to use 
a'=a/n to control the overall level of significance. The estimated contrast is given by 



- - 

eg = CI Y1..+-.+Cg Yg,, 

with estimated standard error 

where 

M = E! +(n-l)E,  , 
n 

El  = Subject (Group) sum of squares / g(k-1), and 

E, = Time * Subject (Group) sum of squares / g(k-1) (n-1) (for details, see Milliken & Johnson, 
1984). 

To test the hypothesis H,: 8,=0 versus HI: 8,+0, we use the approximate F-statistic 

with Fa*,l,r, where r is determined via the Sattenvaite approximation as 

r = [E, + ( n - l ) ~ ~ J / w  

where 

D. RECOMMENDED ANALYSIS FOR EXAMPLE B 

(6.16) 

This example has three factors; region (3 levels), age (2 levels) and year (4 levels). Provinces 
or subjects are nested within region; the observations are repeated on levels of age and years. Our 
first attempt to analyze this data is under the assumption that the underlying model may be written 
as 



where p is the overall mean, R, is the effect of the irh region (i=1,2,3), A, is the effect of the jth age 
(j=1,2), Pk(,) are the provinces within region and TI are the years or time effect (4 levels). The other 
terms represent interactions and is the error term. Clearly, under this model, one should not 
consider "province" (subjects) as a random effect since all available provinces within a particular 
region have been included, hence should be considered "fixed". However, in many investigations, 
sampling from a large number of subjects within a particular region is more efficient, in which case 
"subjects" within region must be considered "random". 

Under the above model, the G-G estimate of E was i=0.52. Following the hypothesis testing 
strategy that we have outlined, the following interactions were tested: 

Source of variation df G-G F statistic G-G p-value 

Year*region 6 2.54 0.078 

Year*age 3 3.98 0.041 

Year*age*region 6 3.52 0.0287 

Because of the significant interaction of age*region and year*region*age, we decided to reanalyze 
the data after stratifying on the levels of age; age1 is the 15-17 age group and age2 is the 18-19 age 
group. This results in "two" data sets, one for each age level, each of which can be analyzed under 
a model similar in structure to the model of Example A. That is, 

y = p +Region + Province(Regi0n) + Year + Year *Region + error . 

We now follow the hypothesis testing hierarchy: 

i) 
ii) H,: no region effect 
iii) H,: no year effect 

H,: no region by year interaction 

for each age level. 

1. Age 15-17 

The G-G estimate E is 0.36 and the p-value on the hypothesis of no time*region interaction 
is 0.3009. Thus, there is no need to look for regional differences at each year. In general, there was 
a significant year effect (p-value of 0.0001) and a significant region effect for which the F statistic 



is F = 18128.02/2440.055 = 7.429 this value being larger than F 05,2 = 4.46. By region, the mean 
pregnancy rates are 42.82,76.49 and 39.74 for the East, Territories and West, respectively. To look 
for regional differences, we use a painvise comparison. Since the error term is Province (Region), 
with a mean square value of 563.27, the standard error of the contrast, 

c g  = (mean region), - (mean region), 

is 

= 5.06 

Therefore, the Territories differ significantly from both the East and the West, and there is no 
significant difference between the East and the West. 

2. Age 18-19 

The G-G estimate of E is 0.54 and the p value on the hypothesis of no time*region interaction 
is 0.0305. Because there is a significant interaction, we compare between the regions at each time 
point (year). Under the hypothesis H,: no regional effect, the resulting p-values by year are: 

Year p-value 
1975 0.0664 
1980 0.0102 
1985 0.0444 
1989 0.0034 

The pairwise comparisons showed significant differences between the Territories and both the East 
and the West, but no significant difference between the East and the West. Without going into the 
details, the standard error of a contrast between two regions is 

where 



E ,  +(n-l)Ez 

n 
M =  

E ,  = 2440.055 

E2 = 89.957 

We now compare between Years (time) for each region. The following tables gives the p values for 
the hypothesis H,: no time effect : 

Region p-value 
East 0.05 12 
Territory 0.9225 
West 0.0201 

Now, since the Western provinces show strong variation over time, it may be worthwhile to show 
the differences in pregnancy rates between time points. 

Contrast Mean Differences F 
1975 - 1980 109.45 - 98.2 2.81 
1975 - 1985 109.45 - 83.78 14.64 
1975 - 1989 109.45 - 89.175 9.13 
1980 - 1985 98.2 - 83.78 4.62 
1980 - 1989 98.2 - 89.175 1.8 
1985 - 1989 83.78 - 89.175 0.646 

The test-wise Type I error rate is 0.10/(6)(3) = 0.005 for an overall level of 10%. Note that the 
standard error for any contrast is 

n . .  

SE(8,) = 4 2[89957] = 6.71 
4 

with 24 degrees of freedom. Since F,,,,,,,,,, = 9.55, the only significant difference is between 1975 
and 1985. 

IV. MISSING OBSERVATIONS 

The methods for the analysis of repeated measures experiments that we have discussed 
depend on a balanced design where all subjects are observed at the same times and there are no 



missing observations. In this section, we examine the problems caused by missing observations and 
unbalanced designs. 

Week 

1 
2 
3 

It is important to consider the reasons behind missing observations. If the reason that an 
observation is missing is related to the response variable that is missed, the analysis will be biased. 
Rubin (1 976, 1994) discusses the concept of data that are missing at random in a general statistical 
setting. Little and Rubin (1 987) distinguish between observations that are missing completely at 
random, where the probability of missing an observation is independent of both the observed 
responses and the missing responses, and missing at random, where the probability of missing an 
observation is independent of the responses. Laird (1 988) used the term "ignorable missing data" 
to describe observations that are missing at random. 

Diet (1 )  Diet (2) 

Animal Animal 

1 2 3 4 5 6 7  

2.5 2 1.5 2 1 3 4  
3 2.5 2 4 2 3  6 
4 2 4 8  

Diggle (1 989) discussed the problem of testing whether dropouts in repeated measures 
investigations occur at random. Dropouts are a common source of missing observations, and it is 
important for the analysis to determine if the dropouts occur at random. In the subsequent section, 
we will assume that the mechanism for missing observations is ignorable. Moreover, the analyses 
recommended are only appropriate for repeated measures experiments that satisfy the sphericity 
conditions. 

It is perhaps most appropriate to explain how an unbalanced repeated measures experiment 
can be analyzed by introducing an example. 

Suppose that a feed trial aims at comparing between two diets (1 and 2). Three animals were 
assigned to diet 1 and four animals were assigned to diet 2. Also suppose that three animals died 

after the first 2 weeks. Their weights in kilograms are shown in the following table ( 1. 

Example 6.1 

In general, let y,, denote the score at the jth week for the ilh individual assigned to the hth diet group. 

Table 6.6



The "mixed effects" model under which this experiment is analyzed can be written as h=l,2, ... M ; 
i=l,2,...kh ; j = 1,2, ... n,, where M is the number of diet groups, k, is the number of subjects receiving 
the h* diet, nhi is the number of time points at which the ith subject is measured under the hth group 
(diet). Here p is an overall mean, G, is a fixed effect representing the effect of the hth group. It is 
assumed that within groups subjects 8 j ( h )  - i.i.d. N(O,o?) which in fact represents the error 
distribution of the ith subject in the hth group. Also, as before, it is assumed that E,,(,) - i.i.d. N(0,a;) 
which represents the error distribution of the jth week to the ith patient within the hth group. It is also 
assumed that these two error components are distributed independently of each other. Finally, w, 
is the time effect. 

Under the model (6.17), 

and 
2 2  Vur(Yh,> = ub+uE . 

Furthermore, the correlation between any two measurements on the same subject is 

i = 1,2, ... kh 
j ,m = 1,2 ,... nhi . 

We shall use the following notation in the remainder of this section: 

M K = C  k, = Total number of subjects 
h=l 

kh 

= Number of repeated measures in the hth group N h  = c nhc 
1 = I  

M 

N = C  Nh = Total number of observations in the entire data set 
h = l  



SSG = The group sum of squares 

which carries (M-1) degrees of freedom. 

where 

and 
M Q = Z  N i G i .  

h=l  

The subjects within groups s u m  of squares is given as 

which carries K-M degrees of freedom. 

Subject(Group) - 2 2 
- ue + A2a, '[ K-M 1 

where 

1 
K-M 

A2 = - 
h=l r = l  



SSE ! !
M

h!1
!
kh

i!1
!
nhi

j!1
yhij"yhi.

2

E
SSE
N"K

! σ2
e .

F ! MSSubj(Group)/MSE ! FK"M,N"K .

The error sum of squares is

which carries N-K degrees of freedom.  Moreover,

The above results can be summarized in the following ANOVA table (Table 6.7).

Table 6.7
ANOVA for Unbalanced Repeated Measures Experiment

S.O.V. d.f S.O.S. M.S. EMS

Group M-1 SSG

MSG !
SSG
M"1

σ2
e#λ1σ

2
δ#

Q
M"1

Subjects (Group) K-M Subj(Group) MSSubj(Group)

!
Subj(Group)

K"M

σe
2+λ2σδ2

Residuals N-K SSE

MSE !
SSE
N"K

σe
2

Total N-1

As can be seen from the EMS column of Table 6.7, the only meaningful exact F-test that can be
constructed is on the hypothesis H0:σδ2 = 0 versus H1:σδ2 > 0 which tests the variability among
subjects.  This is given as

We now show how a repeated measures experiment with missing data can be analysed in SAS,
using PROC GLM including an interaction term:

PROC GLM; 
CLASS DIET ANIMAL WEEK;
Model Y = DIET " WEEK ANIMAL (DIET) / E SS3; 
RANDOM ANIMAL (DIET);



F !
4.34
0.44

! 9.98

F !
MS Week

MSE
!

3.83
0.44

! 8.81

F !
MS Diet$Week

MSE
!

.76

.44
! 1.75

The EMS table produced by SAS is given below (Table 6.8).

Table 6.8
The EMS Table for the Data of

Example 6.1

Source Type III Expected Mean Square

DIET σe
2 + 2.2105 σδ2 + Q (DIET, DIET*WEEK)

WEEK σe
2 + Q (WEEK, DIET*WEEK)

DIET*WEEK σe
2 + Q (DIET*WEEK)

ANIMAL(DIET) σe
2 + 2.4 σδ2

ERROR               σe
2

The ANOVA results are given in Table 6.9.

Table 6.9
ANOVA of the Mixed Repeated Measures Experiment 

Source df Type III SS Mean Square

DIET
WEEK
DIET*WEEK
ANIMAL(DIET)
ERROR

1
2
2
5
7

 6.32
 7.67
 1.52
21.71
 3.04

6.32
3.83
0.76
4.34
0.44

From Table 6.9, the F-statistic on H0:σδ2=0 is

since F.05,5,7 = 3.97, the hypothesis is rejected.

To test no time effect (HT), the ratio

is larger than F.05,2,7 = 4.74, and we conclude that there is a significant time effect.  To test the
hypothesis of no diet (group) by week interaction (i.e., HgxT) we compare the ratio

to F.05,2,7 = 4.74, and we conclude that there is no diet by week interaction.



!F !
6.32

σ̂2
e # 2.21 σ̂2

δ

. (6.18)

E MSE ! σ2
e

E MSSubj(Diet) ! σ2
e # 2.4 σ2

δ

0.44 ! σ̂2
e

4.34 ! σ̂2
e # 2.4 σ̂2

δ

σ̂2
e ! 0.44

σ̂2
δ ! 1.63 .

!F !
6.32

0.44 # 2.21(1.63)
! 1.57 .

Recall that for the balanced data, we used the ratio

MS(DIET) / MSSubject(DIET)

to test for significant diet effect (i.e., H0:No diet effect).  This is not appropriate for unbalanced data
since the coefficient of σδ2 in the expected values of the numerator and denominator mean square are
different.  In fact, in  Table 6.7 these coefficients are given respectively by λ1 and λ2, and in the given
example λ1 = 2.21, and λ2 = 2.4.  A statistic to test H0: (no diet effect) should be

Therefore, one has to find estimates for the variance components σe
2 and σδ2.  This is usually

obtained by equating the mean squares from the ANOVA to their expected values.  Since

and

we need to solve the equations

therefore,

Substituting in (6.18) we get

The statistic does not have an exact F-distribution for two reasons: (i) The statistic in the
~
F

denominator, σ̂e
2 + λ2 σ̂δ2, does not have a distribution proportional to an exact chi-square

distribution, and (ii) the numerator and denominator of  may not be statistically independent.  
~
F



νi σ̂
2
i

σ2
i

! χ2
νi

(i!1,2) .

c1σ̂
2
1 # c2σ̂

2
2 !! a χ2

ν . (6.19)

E(D) ! c1 E(σ̂2
1)#c2 E(σ̂2

2)

! c1 σ
2
1#c2 σ

2
2

Var(D) ! c 2
1 Var(σ̂2

1)#c 2
2 Var(σ̂2

2)

!
2 c 2

1 σ
4
1

ν1

#
2 c 2

2 σ
4
2

ν2

.

c1 σ
2
1#c2 σ

2
2 ! aν

2(
c 2

1 σ
4
1

ν1

#
c 2

2 σ
4
2

ν2

) ! 2a 2ν

However, we may use the Satterwaite approximation to the distribution of , in order to obtain~
F

approximate critical points.  The approximation is quite simple and proceeds as follows:

Let

If σ̂1
2 and σ̂2

2 are independent, we need to find an approximation to the distribution of D=c1 σ̂1
2 + c2

σ̂2
2, where c1 and c2 are positive constants.  Let us assume that the distribution of D can be

approximated by a multiple of χ2 with ν degrees of freedom.  That is,

The idea is to obtain a and ν by equating the mean and variance of both sides of (6.19).

Since

and

Therefore,

and



a !

c 2
1 σ

4
1

ν1

#
c 2

2 σ
4
2

ν2

c1σ
2
1#c2σ

2
2

ν !
(c1 σ

2
1#c2σ

2
2)

2

c 2
1 σ

4
1

ν1

#
c 2

2 σ
4
2

ν2

.
(6.20)

ν(c1 σ̂
2
1#c2σ̂

2
2)

c1 σ
2
1#c2 σ

2
2

! X 2
ν (6.21)

(1) Type III Diet Mean Squares

σ2
e#2.21 σ2

δ

! X 2
(1)

(5) Animal (Diet) Mean Squares

σ2
e#2.4 σ2

δ

! X 2
(5)

(7) Error Mean Squares

σ2
e

! X 2
(7) .

from which

and

Therefore,

approximately.

We shall now use the above approximation to derive an approximate test on group (diet) effect.
Under H0: No diet effect,

and

and

Let σ1
2 = σe

2 + 2.4 σδ2, and σ2
2 = σe

2.  Then from (6.20) and (6.21)

σ̂1
2 = σ̂e

2 + 2.4 σ̂δ2,   σ̂2
2 = σ̂e

2,
ν1 = 5, and ν2 = 1 .



σ2
e ! σ2

2

σ2
δ !

σ2
1"σ

2
2

2.4

σ2
e # 2.21 σ2

δ ! σ2
2 # 2.21

σ2
1"σ

2
2

2.4

!
2.21
2.4

σ2
1 # 1"

2.21
2.4

σ2
2

! .92 σ2
1 # 0.08 σ2

2

ν(0.92 σ̂2
1#0.08 σ̂2

2)

σ2
e#2.21 σ2

δ

! X 2
ν

ν !
(0.92)(4.34)#(0.08)(0.44) 2

(0.92) (4.34)2

5
#(0.08) (0.44)2

7

!
16.27

3.47#.002
! 4.68 .

Noting that

then

which means that c1 = 0.92 and c2 = 0.08.  Using Satterwaite's approximation we have

where

Therefore,  is approximately distributed as Fα,1,4.68, under H0.  The p-value is given by Pr[F̃>Fα,1,4.68]
~
F

= 0.269 and we conclude that there is no significant difference between diets in the way they affect
growth.

The analysis of repeated measures with missing observations is one of the most ubiquitous
models in biometrical and medical research.  However, significance testing under such models is not
straightforward, even under the assumption that the sphericity condition is satisfied.  However, using
PROC GLM in SAS we can obtain some useful information from the Type III sum of squares that
helps with the testing for group effect.  The procedure which was discussed in the above example
was recommended by Milliken and Johnson (1984) and can be summarized as follows:



!
F !

Mean Square of effect

!!2
e#c !!2

δ

d2 !
c !!2

1#(q"c)!!
2
2

2

c 2 !!4
1

"1

#
(q"c)2 !!2

2

"2

.

(1) In the model statement of PROC GLM in SAS, we should list the fixed effects first, followed
by listing the random effects.  One should also use the RANDOM option in order to obtain
expected mean squares, which are required to construct tests of hypotheses and confidence
intervals.

(2) From the table of expected mean squares (Table 6.8), we decide on the one corresponding
to the effect being considered.  This will be in the form σe

2 + cσδ2 + Q.  Therefore, an
approximate divisor for obtaining an approximate F-statistic will be σ̂e

2 + cσ̂δ2.  An
approximate F-statistic is

which should be compared with Fα,d1,d2
 where d1 are the degrees of freedom of the numerator of

and
~
F

σ̂1
2 = σ̂e

2 + q σ̂δ2 , σ̂2
2 = σ̂e

2.  Note that σ̂1
2 is the Subject (Group) mean square, which carries ν1

degrees of freedom, and σ̂2
2 is the error mean squares, which carries ν2 degrees of freedom.

V. MIXED LINEAR REGRESSION MODELS

A. FORMULATION OF THE MODELS

A general linear mixed model for longitudinal and repeated over time data has been proposed
by Laird and Ware (1982);

y x zi i i i i= + +β α ε (6.22)

where  is an  column vector of measurements for subject (cluster) ,  is anyi ni × 1 i X i
n

i
p×

design matrix,  is a  vector of regression coefficients assumed to be fixed,  is anβ p × 1 zi

design matrix for the random effects, , which are assumed to be independently distributedn qi × αi

across subjects with distribution where B is an arbitrary covariance matrix. Theα σi N B~ ( , )0 2

within subjects errors,  are assumed to be distributed . In many applications,εi
ε σi iN W~ ( , )0 2



it is assumed that , the identity matrix. It is also assumed that  and  are independent ofW Ii = εi α i

each other. The fact that , ,  and  are indexed by   means that these matrices are subjectYi X i Z i Wi i

specific. Note that, the model (6.17) is a special case of (6.22). To illustrate this point, we consider
example (6.1) with the missing values being imputed, so that we have balanced data. Table (6.6)
becomes 

Diet (1)
Animal

Diet (2)
Animal

Week 1             2             3 4           5            6            7

1 2.5          2            1.5 2           1            3            4

2 3            2.5           2 4           2            3            6

3 4             3             2 3           3            4            8 

To show how model (6.17) is a special case of the general linear mixed model (6.22), we
define an indicator variable for each animal to indicate group membership.

            Let    x i jk( ) =




0

1

  if g ro u p  is  1

  if  g ro u p  is  2

The  subscript indicates that animal  is nested within the diet group , and indicates( )i jk j i k

repeated measures on the  animal. Hence equation (6.17) can now be written as j th

( ) ( ) ( ) ( )Y xi jk i jk j k i jk
= + + +β β α ε1 2 (6.23)

The model for animal  in diet group 1 isj

( )
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and for animals in the second diet group



.

( )

( )

( )

( )

( )

( )

( )

y

y

y

j

j

j

j

j

j

j

2 1

2 2

2 3

1

2
2

2 1

2 2

2 3

1 1

1 1

1 1

1

1

1
















=
























 +

















+

















β
β

α
ε
ε
ε

The  is the mean of diet group 1, and  is the mean of diet group 2.β1 β β1 2+

There are several ways of modelling the means or fixed effects. We show two of them:

(i) Model (1) for fixed effects:

In this model, the fixed part , for the first diet group can be written as xiβ

x jβ

β
β
β
β
β
β

=














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














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1

2

3

4

5

6

(a)

              [ ]=
′

β β β1 2 3

and for the second diet group is 

x jβ

β
β
β
β
β
β

=

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
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
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0 0 0 0 1 0

0 0 0 0 0 1

1
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3

4

5

6

(b)

       [ ]=
′

β β β4 5 6



The above two equations represent a model in which each diet group has a different growth curve.
The number of parameters of the fixed effect part of the model equals the number of diet groups
multiplied by the number of time points. 

Another possible reparameterization is, for the diet group 1 we keep the representation (a) but for
diet group 2 we have 
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Under this parameterization, the coefficients ,  and  still generate growth curve for diet groupβ1 β2 β3

1, while are the differences between the two growth curves.( )β β β4 5 6, ,

(ii) Model (2) for fixed effects :

The second model for the fixed effects is a straight line for each group. One possibility for
group 1 is 
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and for group 2
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Note that for group 1,  is the intercept and  is the slope for the line. The hypothesis that the twoβ1 β2

lines are parallel is 

H 0 3 0:β =

Note also that the second column in the  matrix represents the time points at which theX i

measurements were taken. The third column is for the dummy variable denoting group membership.

(iii) Modelling the random effects :

There are many ways to model the random components of the between subjects random
effects and the within subjects error structure. Here we present 4 models as suggested by Jennrich
and Schluchter (JS) (1986).

1. Unstructured Covariance (arbitrary covariance structure):

Here, the covariance matrix of the observations on each animal is an arbitrary ( )3 3×
covariance matrix. This arbitrary error structure can be specified under the model (6.22) following
one of the two approaches :

       -   eliminate  term, and set  equal to  identity matrix. The resulting errorεi z i 3 3×
structure has arbitrary covariance matrix:

( )( ) ( )( ) [ ]E Y E Y Y E Y E B− −
′




= ′ =αα σα

2

      -   eliminate  which is equivalent to setting . The resulting covariance           α i B = 0
                       structure is 

               ( )( ) ( )( ) [ ]E Y E Y Y E Y E ee W
i

− − ′




= ′ = σ2

These models are equivalent to models 1, 2 and 3 of JS (1986).

2. Compound Symmetry (CS model):

This covariance structure is obtained by setting ,  as a  matrix of 1's andW Ii e= σ 2 zi 3 3×

. Hence B I= σα
2
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e
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Model 7 of JS is the CS model..

3. Random Coefficients Model (RCM):

For this model, the fixed effects are a separate line for each group as in equations (c) and (d).
The between animals (clusters) component is 
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The random components  and  represent the random deviation of the intercept andα
1 j

α
2 j

slope for the  animal from the animal’s group mean intercept and slope. Moreover, it is assumedj th

that . W Ii
=

4. Autoregressive Covariance Structure (AR)

JS (1986) model 5 is a first order autoregression where the within animal error structure is
a first order autoregressive process, and the between subjects components is set equal to zero

. For the 3 time points example:( )B = 0

Wi =
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B. MAXIMUM LIKELIHOOD (ML) AND RESTRICTED  MAXIMUM  LIKELIHOOD
(REML) ESTIMATION

The estimation of the parameters of the general mixed model (6.22) is obtained using the
method of maximum likelihood, which is described in full detail in Jennrich and Schluchter (1986)
and Jones (1993). The solution of the likelihood equations are: 

( )!β = ′ ′







−

−
−∑ ∑x V x x V xj j j

j
j j j

j

1
1

1 (6.24)

and

 ( )C ov x V xj j j
! !β σ= ′





−
−

∑2 1
1

for given and , where B W
i

              V Z B Z W
j j j j
= ′ +

is the covariance matrix for the  subject. The maximum likelihood estimator (MLE) of the scalej th

parameter  is σ 2

( ) ( )! ! !σ β β2 11
= −

′
−∑ −

N
Y X V Y Xj jj j j j

(6.25)

where  is the total number of observations on all subjects. When the number ofN n j
j

= ∑
parameters is not small relative to the total number of observations, the estimated variances of the
MLEs become seriously biased. To reduce the bias the restricted maximum likelihood (REML) is
used. For repeated measures experiments, Diggle (1988) showed that the REML estimate of  is theβ
same as in (6.24), however, the unbiased estimate of σ2 is 

( ) ( )! ! !σ β β2 11
=

−
−

′
−∑ −

n p
Y X V Y Xj jj j j j

(6.26)



C. MODEL SELECTION

As we have alreadly discussed in section V of Chapter 4, the likelihood ratio test (LRT) is
the appropriate tool to perform model comparisons. When many models are fitted to the same data,
an LRT can be calculated between any two “nested models”, where nested means one of the models
is a reduced version of the other (see Chapter 4, Section B). If we are to compare two models that
are not nested the LRT cannot be used to test their difference. An alternative model selection
procedure is Akaike’s Information Criterion (AIC) where 

   A IC L= − +2 2ln ( )n u m b er o f es tim ated  p aram eters

The model that has the lowest value of AIC is selected as the best model.

Example 6.2 :   Potthoff and Roy (1964) present a set of growth data for 11 girls and 16 boys. For
each subject, the distance (mm) from the center of the pituitary to the pterygomaxillary fissure was
recorded at the ages of 8, 10, 12, and 14. None of the data are missing. The questions posed by the
authors were

(i) Should the growth curves be presented by second degree equation in age, or are linear
equations adequate?

(ii) Should two separate curves be used for boys and girls, or do both have the same growth
curve?

(iii) Can we obtain confidence bands(s) for the expected growth curves?

Before we address these questions, we should emphasize that little is known about the nature of the
correlation between the  observations on any subject, except perhaps that they are seriallyni

= 4

correlated. The simplest correlation model is the one in which the correlation coefficient between

any two observations  periods of time apart is equal to , and in which the variance is constantt ρ t

with respect to time, under this model, the covariance matrix is: 
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This is the AR(1) correlation structure. 

For the subject we fitted the following modeli th
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x i 1

0

1
=




  if g e n d er is  b o y
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and                    ( )xi 2 8 1 0 1 2 1 4=
′

is treated as a continuous covariate. When a quadratic component of age was added to the model,
its  -coefficient was not significant and thus a linear effect was deemed sufficient.β

We used PROC MIXED provided in the SAS package to fit the above model. The SAS program is :

PROC MIXED;
CLASS GENDER SUBJECT;
MODEL DISTANCE = GENDER AGE|S;
REPEATED/TYPE = AR(1) SUB = SUBJECT(GENDER) R CORR;  

RUN; 

The SAS output summary is 
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Based on the fitted model, it seems that a linear function in age is adequate, and that separate curves
be used for boys and girls (significant coefficient of ).x i1

To address question (iii) posed by Potthoff and Roy, we follow the approach suggested by
Jones (1993). Since for each subject in the study, there is an  matrix, let  denote a possible rowX i x

of  for any subject. For example, for a subject who is a girl at age 14, then  orX i ( )x =
′

1 1 1 4

for a subject who is a boy at age 10, then . The estimated population mean for a( )x =
′

1 0 1 0

given vector is x
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By varying the elements of the vector, estimated population curves can be generated for differentx

values of the covariates. The confidence limits are thus .! ( !)Y z V ar Y± α
2

As we have indicated, there are several approaches to model the within subject correlation
structure. In addition to the AR(1), we fitted two linear mixed models, the first with unstructured
correlation and the other has the form of compound symmetry. Table 6.10 gives a summary of fitting
the three models for the sake of comparison. 

Table 6.10
Summary of Fitting Linear Mixed Models to the Repeated Measures Data of Example 6.2

UN=unstructured, AR(1)=first order autoregressive process, CS=compound symmetry

                                                                                        Model
Parameter Estimate                         UN                            AR(1)                            CS

                                          17.417 (0.866)            17.879 (1.091)           17.707 (0.834)!β0

                                           -2.045 (0.736)             -2.418 (0.693)           -2.321 (0.761)!β1

                                            0.674 (0.070)              0.653 (0.091)             0.660 (0.062)!β2

           AIC                                   224.347                       224.724                     220.756

Non-linear parameters                                                    = 0.626               = 3.267!ρ σ b
2

                                                                                     = 5.297               = 2.049    !σ 2 σ e
2

Clearly, there are little or no differences among the three models. Since none of the above models
is considered nested within either of the others, model comparisons should be confined to the AIC.
Clearly, UN and AR(1) are indistinguishable, and both are worse than the CS model (since the CS
has smaller AIC value).



The PROC MIXED programs to fit the UN and CS models are similar to the above programs,
with AR(1) being replaced by UN for unstructured covariance and CS for compound symmetry.

Example 6.3 : “Multiple levels of nesting”

Situations in which more than two factors would be nested within each other are of frequent
occurrence in repeated measures experiments. Example 6.3 illustrates this situation. Pens of animals
are randomized into two diet groups. Animals in each pen are approximately of the same age and
initial weight. Their weights were measured at weeks 1,2 and 3. 

The data are presented in Table 6.11.

Table 6.11
Data for the Feed Trial with Pens Nested in the

Diet Groups and Animals Nested in Pens.

Diet
(1)

Diet
(2)

Pen Pen

1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6

Animal Animal

W
e
e
k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2.5 2 1.5 1.5 2 2.5 1.5 1 1.5 2 1.5 3 3 3 4 3 4 3 3 4 4 4

2 3 2.5 2 2.5 4 3.5 2 1.5 1.5 2 2 3 6 4 5 3 4.5 3 7 6 6 6

3 4 2.5 2 3 4 2.5 2.5 1 2 2.5 2 4 8 7 6 5 5.5 4 9 7 8 7

The data in Table 6.11 show that pens 1, 2 and 3 are nested within the diet group 1 while pens 4, 5
and 6 are nested in diet group 2 (i.e. different pens within each group) and animals are nested within
pens. The main objectives of the trial were to see if the weights of animals differed between groups,
and if such differences were present over time.

To answer the above questions, we follow a strategy similar to that of Looney and Stanley
(1989). The general mixed models were fitted using PROC MIXED in SAS. The first model
included diet by week interaction term:



Model with interaction:

PROC MIXED;
CLASS DIET PEN ANIMAL WEEK;

MODEL WEIGHT = DIET|WEEK;
RANDOM PEN(DIET) ANIMAL(PEN DIET);

RUN;

There was significant interaction. We therefore sorted the data by week:

Model to compare between diets at each week:

PROC SORT;
BY WEEK;

PROC MIXED;
BY WEEK;

CLASS DIET PEN;
MODEL WEIGHT = DIET;
RANDOM PEN(DIET);

RUN;

The results are summarized in table 6.12.

Table 6.12
Data Analysis of Example 6.3

Comparing Between Diets at Each Week

                                                                                        Week
                                                        1                                  2                                3

Covariance                            0.000                           0.858                          0.755σ p
2

Parameters                            0.245                           0.761                          1.224σ e
2

Test for fixed effects
F statistic                                     63.88                           8.100                           19.78
p value                                        0.0001                         0.0120                         0.0004

There are significant differences between the two diets at each week. Bonferroni corrected error rate
is .≅ 0 0 2.

VI.  THE GENERALIZED ESTIMATING EQUATIONS APPROACH

It is apparent that the ANOVA approach to the analysis of repeated measures data is quite
simple, particularly when the data are balanced; that is, when each subject is measured the same



Cov(eij,eij %) !
σ2

ρσ2
j!j %

j#j %
.

number of times.  The use of PROC ANOVA with the "repeated" statement in SAS is quite effective
in deriving the necessary information to carry on with the hypothesis testing.  PROC GLM with the
Type III sum of squares using the option E, provide sufficient information to identify the error
structure corresponding to the hypothesis in question. Efficient fitting procedures such as PROC
MIXED in SAS are available for more general structure of the linear mixed model.

However, there are limitations to the use of ANOVA which prevent its recommendation as
a general tool for the analysis of repeated measures or longitudinal data (see Diggle et al., 1994).
The first limitation is that it fails to exploit the efficiency that may be gained if the covariance among
repeated observations is modeled.  The second limitation is that it assumes that the mechanism of
missing data is ignorable, and does not produce reliable results if the missing data are excessive.
Thirdly, most biomedical data are not normally distributed, and may not satisfy the sphericity
assumptions, and therefore the ANOVA and PROC MIXED procedures may no longer be valid.
Liang and Zeger (1986) and Zeger and Liang (1986) presented a unified approach to analyzing
longitudinal data, which models the covariance among the repeated observations.  Their approach
models both discrete and continuous outcomes based on the application of generalized estimating
equations (see Chapter 4).  To explain how their approach works for repeated measures observations,
let us consider the following example. 

Example 6.4:

Suppose that I=2k subjects have been randomized into two treatment groups, each has k individuals.
Suppose that each subject was measured twice, at baseline (0) and two hours later.  Let yij represent
the measurement on the ith subject at the jth time point (j=0,1).  Note that if the number of repeated
measures per subject is 2, then no assumptions are needed on the nature of the correlation between
the observations over time.  Now, we distinguish between two situations:

(i) Modeling the group (treatment effect):  Let yij=β0+β1Xi+eij, where Xi is a dummy variable
coded as 0 if the ith subject belongs to the first group, and 1 if it belongs to the second group; eij is
a random error, so that E(eij)=0 and

Under the above representation, β0 is the average response of a subject in group 1, and β0 +
β1 is the average response for a subject in group 2.  Therefore, β1 is the group effect.  It is known that
the least squares estimate of β1 is



β̂1 !

!
I

i!1
!

1

j!0
yij"y xi"x

!
n

i!1
!

1

j!0
xi"x 2

!
1
I

!
group 1

(yi0#yi1) " !
group 2

(yi0#yi1)

Var(β̂1) !
2σ2(1#ρ)

I
.

γ̂1 !

!
I

i!1
!

1

j!0
yij"y j"j

!
n

i!1
!

1

j!0
ji"j 2

!
1
I !

I

i 1
(yi1"yi0)

Var(γ̂1) !
2σ2

I
(1"ρ) .

Hence

(ii) Modeling the time effect:  Again let yij=γ0+γ1j+eij, where γ1 represents the time effect.  The
least squares estimate of γ1 is

and

Note that, if the data were analyzed under independence (ρ=0), a test on β1=0 will reject the null
hypothesis of no group effect too often, and a test on γ1=0 will result in accepting the hypothesis of
no time effect too often.

In addition to the assumption of independence required by the classical regression models
considered above, one also assumes that the group and time effects, when modeled simultaneously,
should be additive, and this could be quite restrictive. Moreover, one also assumes that the
observations are normally distributed, an assumption that is violated by many types of data.  The
introduction of the Generalized Linear Models (GLM) alleviates these restrictions.  A key
component of such models is a link function g(E(yij))=Xij

Tβ that relates a monotone differentiable
function of E(yij) to Xij

Tβ.  In Chapter 4 we showed that the conventional link for binary data was the
logit transformation.
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Another feature of GLM is the relaxation of the assumption that yij have a constant variance.
Instead, it is assumed that the variance of yij is a known function of µij=E(yij).  The variance of yij is
written as φVar(µij) where φ is a scalar parameter.

The extension of GLM by Liang and Zeger (1986) was to account for the correlation among
repeated observations.  Let subject i (i=1,2,...k) be observed at times j=1,2,...ni, which results in a

total of  observations.  The response vector for the ith individual  ~yi =(yi1, yi2,...yini
)TN ! !

k

i !1

ni

and the associated covariate information  ~x i =(xi1, xi2,...xini
)T.  It is also assumed that yij and yij

% (j#j%)
are correlated, while yij and yi

%
j
% are (i#i%) uncorrelated.  The covariance matrix has the form φ Vi,

where

Ri(α) is a working correlation matrix where the parameter α fully specifies the form of Ri(α), and
Ai=diag[V(µi1),...V(µini

)].  When Ri(α) is in fact the true correlation matrix, then Vi=Cov(yi). The
covariance matrix of all N observations ~ y =[~y1

T ,...~y1
T ]T is block diagonal; φ V = φ diag [V1,...Vk].

The regression parameters β are estimated by solving:

where

These are generalized estimating equations (GEE) and are identical in form to the weighted least
squares estimating equations (see McCullagh and Nelder, 1989, p. 339).  The solution to the GEE
(6.24) gives a consistent estimate of β that is asymptotically multivariate normal with covariance
matrix

Let us consider situation (ii) of the previous example, where
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which means that

Moreover,

The regression coefficients can be estimated by solving

or

from which
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Cov(β̂) ! φ M "1 " M "1 (6.34)

The covariance matrix is

Hence,

and therefore the Var (γ̂1) correctly accounts for the within-subjects correlation.

To solve (6.24) the correlation parameter α must be known.  However, regardless of the true
correlation structure (e.g., serial, exchangeable, no correlation), Liang and Zeger (1986) use a
"working" correlation matrix, which is data driven, as an estimate of Vi.  The resulting estimating
equations are given by

where V̂i is an estimate of Vi in (6.24) and is given by

The solution of (6.26) gives asymptotically multivariate normal estimates with covariance matrix
given by
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where

If  = Vi, then (6.28) reduces to (6.25).  The useful feature of the GEE is that β and Cov ( ) are!V1 β̂
consistently estimated:

(1) for non-normal data,
(2) for misspecified correlation structure, and
(3) for unbalanced data.

However, one should be able to correctly specify the link function; otherwise, the obtained
estimates are no longer consistent.

The issue of robustness, of the GEE approach, against misspecification of the correlation
structure was the subject of investigation by many authors. In particular, if the correlation structure
is misspecified as “independence” which assumes that the within cluster responses are independent,
the GEE has been shown to be nearly efficient relative to the maximum likelihood in a variety of
settings. When the correlation between responses in not too high Zeger (1988) suggested that this
estimator should be nearly efficient. McDonald (1993), focussing on the case of clusters of
size  (i.e. the bivariate case) concluded that the estimator obtained under specifyingni = 2

independence may be recommended whenever the correlation between the within cluster pair is
nuisance. This may have practical implications since the model can be implemented using standard
software packages. In a more recent article, Fitzmaurice (1995) investigated this issue analytically.
He has confirmed the suggestions made by Zeger (1988) and McDonald (1993). Furthermore, he
showed that when the responses are strongly correlated and the covariate design includes a within-
cluster covariate, assuming independence can lead to a considerable loss of efficiency if the GEE is
used in estimating the regression parameters associated with that covariate. His results demonstrate
that the degree of efficiency depends on both the strength of the correlation between the responses
and the covariate design. He recommended that an effort should be made to model the association
between responses, even when this association is regarded as a nuisance feature of the data and its
correct nature is unknown.



Example 6.5

The following data are the results of a longitudinal investigation that aimed at assessing the long-term effect
of two types of treatments (1&excision arthroplasty; 2&triple pelvic osteotomy) for Hip-Dysplasia in dogs.
The owner's assessment was the response variable and was recorded on a binary scale at weeks 1,3,6,10, and
20.  Using the generalized estimating equations approach (GEE) we test for treatment effect, controlling for
laterality, and age as possible confounders.

Dog No. Laterality Age Type of Surgery
Owner's assessment +

Week 1 Week 3 Week 6 Week 10 Week 20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

U
U
U
B
U
U
U
U
U
U
U
U
U
U
B
B
B
B
B
B
U
B
B
U
U
B
B
B
U
B
B
B
U
U
U
U
U
U
U
U
U
U
U
U
U
U

6
4
7
7
4
8
7
6
8
5
6
6
7
7
7
7
5
6
8
6
8
2
1
1
1
2
2
2
1
2
2
2
1
2
1
2
1
2
6
8
8
8
2
1
1
2

1
1
2
2
2
2
2
2
1
2
1
2
1
1
2
2
1
1
2
1
1
2
1
1
1
2
2
2
1
2
2
2
1
2
1
2
1
2
1
1
2
1
2
1
1
2

1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
0
1
1
1
0
0
1
1
0
0
1
1
1
1
0
1
1
0
1
0
1
0
1
0

1
1
1
1
1
1
0
1
1
1
1
0
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
0
0
1
0
0
1
1
1
0
1
1
1
0
1
1
0
0
1
0

1
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
1
1
0
1
1
0
1
1
1
1
0
0
1
0
0
0
1
0
1
1
1
1
1
1
0
0
0
1
1
0

1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1
1
0
0
0
1
1
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0

* U&unilateral, B&bilateral
** 1&excision arthroplasty

2&triple pelvic osteotomy (TPO)
+ 1&good; 0&poor



The data in example 6.5 have been fitted under 3 different specifications of the correlations among
the scores in weeks 1, 3, 6, 10 and 20. The SAS programs required to fit the GEE model are given
below:

Model 1 : This model specifies an autocorrelation with lag 1. The rationale being that adjacent
responses would be correlated while responses that are separated by more than one time unit are
uncorrelated.

proc genmod;
class dog lateral typsurg;

model score = lateral typsurg age/
dist = binomial;

repeated subject = dog / type = AR(1);
run;

Model 2 : This model specifies an exchangeable or compound symmetry correlation. The SAS
program is similar to that of model 2, except the TYPE option in the “repeated” statement is type
= CS.

Model 3 : This model is fitted for comparative purposes and the program is similar to the above, with
TYPE = IND included in the “repeated” statement.

The results of fitting the three models are summarized in Table 6.13.

Table 6.13
Fitting of the Data in Example 6.4

Parameter Estimate                  Model 1                                      Model 2                                      Model 3
                                                  AR(1)                                            CS                                     Independence

Intercept                              0.821 (0.555)                                0.755 (0.529)                              0.755 (0.529)

Lateral b                             -1.013 (0.450)                              -1.009 (0.436)                             -1.009 (0.436)
Lateral u                                    0.000                                            0.000                                          0.000

Typsurg 1                             0.701 (0.490)                                0.802 (0.475)                               0.802 (0.475)
Typsurg 2                                   0.000                                            0.000                                          0.000

age                                       0.058 (0.102)                                0.059 (0.099)                               0.059 (0.099)

 (scale)                                  1.010                                             1.011                                          1.011φ
scaled deviance                         1.1008                                           1.1008                                        1.1008

The scale parameter is considered known. It is estimated as the square root of the normalized
Pearson’s chi-square. The scaled deviance is the ratio of the deviance to the number of degrees of
freedom carried by the model (df= 230 - 4 = 226) since we have 5x46=230 observations, and
estimated 4 parameters.



Comments

1. All the covariates in the model are measured at the cluster (subject) level, and no time varying
covariates are included in the study. With this type of covariate design one should expect little or no
difference between Model 3 and the other two models which specify some degree of correlation.

2. Relative to the unilateral, bilaterality (lateral) seems to have significant negative effect on the
condition of the subject. However, neither age nor the type of surgery (Typsurg) have significant
effect.

3. The bracketed numbers, are the empirical standard errors obtained from the sandwich estimator
(see Chapter 4).



Chapter 7

SURVIVAL DATA ANALYSIS

I.   INTRODUCTION

Studies with survival data as the response involve observing units until failure is experienced.
In the case of medical studies, the units are humans or animals and failure may be broadly defined
as the occurrence of a pre-specified event. Events of this nature include times of death, disease
occurrence or recurrence and remission. 

Although survival data analysis is similar to the analysis of other types of data discussed
previously (continuous, binary, time series) in that information is collected on the response variable
as well as any covariates of interest, it differs in one important aspect : the anticipated event may not
occur for each subject under study. Not all subjects will experience the outcome during the course
of observation, resulting in the absence of a failure time for that particular individual. This situation
is referred to as censoring in the analysis of survival data, and a study subject for which no failure
time is available is referred to as censored. 

Unlike the other types of analysis discussed previously, censored data analysis requires
special methods to compensate for the information lost by not knowing the time of failure of all
subjects. In addition, survival data analysis must account for highly skewed data. Often one or two
individuals will experience the event of interest much sooner or later than the majority of individuals
under study, giving the overall distribution of failure times a skewed appearance and preventing the
use of the normal distribution in the analysis. Thus the analysis of survival data requires techniques
which are able to incorporate the possibility of skewed and censored observations.

The above paragraphs referred to censoring in a broad sense, defining censored survival data
as data for which the true failure time is not known. This general definition may be broken down for
three specific situations, resulting in three types of censoring : 

Type I Censoring : Subjects are observed for a fixed period of time, with exact failure times
recorded for those who fail during the observation period. Subjects not failing
during the observation period are considered censored. Their failure times
become the time at which they were last observed or the time at which the
study finished. 

Type II Censoring: Subjects are observed until a fixed number of failures occur. As with Type
I Censoring, those failing during the observation period are considered
uncesnsored and have known failure times. Those not failing are considered
censored and have failure times which become the time at which they were
last observed or the time at which the largest uncensored failure occurred.



Random Censoring : Often encountered in clinical trials, random censoring occurs due to the
accrual of patients gradually over time, resulting in unequal times under
study. The study takes place over a fixed period of time, resulting in exact
failure times for those failing during the period of observation and
censored failure times for those lost to follow up or not failing before
study termination. All failure times reflect the period under study for that
individual.

The information presented for the three censoring situations is summarized in Table 7.1:

Table 7.1
Summary Information for Three Types of Censoring

Type I Type II Random

Study Characteristics -study continues for a
fixed period of time

-study continues until a
fixed number/ proportion
of failures

-study continues for a
fixed period of time
-unequal periods of
observation possible

Uncensored Failure Time -equal to the exact failure
time which is known

-equal to the exact failure
time which is known

-equal to the exact failure
time which is known

Censored Failure Time -equal to the length of the
study

-equal to the largest
uncensored failure time

-calculated using time of
study completion and
time of subject
enrollment

Lost to Follow up Failure
Time

-calculated using time at
which subject is lost and
time at which study starts

-calculated using time at
which subject is lost and
time at which study starts

-calculated using time at
which subject is lost and
time of subject
enrollment

Reproduced from Biometrics, 52, 328!334, 1996. With permission from David Santini, International Biometrics
Society.

If the survival time is denoted by the random variable , then the following definitions are usefulT

in the context of survival analysis:

1. Cumulative Distribution Function (CDF) - denoted by , this quantity defines the probabilityF t( )
of failure before time :t
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2. Probability Density Function (PDF) - denoted by , this quantity is the derivative of thef t( )

Cumulative Distribution Function and defines the probability that an individual fails in a small
interval per unit time :
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As with all density functions, is assumed to have the following properties:f t( )

a) The area under the density curve equals one

b) The density is a non-negative function such that
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3. Survival Function - denoted by , this function gives the probability of survival longer thanS t( )

time :t
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The survival function is assumed to have the following properties:

a) The probability of survival at time zero is one, S t t( ) = =1 0    fo r 

b) The probability of infinite survival is zero,   S t t( ) = = ∞0     fo r 

c) The survival function is non-increasing 

4. Hazard Function - denoted by , this function gives the probability an individual fails in ah t( )
small interval of time conditional on their survival at the beginning of the interval :
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In terms of the previously defined quantities, the hazard function may be written as 

h t
f t
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In practice, the hazard function is also referred to as the instantaneous failure rate or the force of
mortality. It represents the failure risk per unit of time during a lifetime.

The cumulative hazard function is written as and is the integral of the hazard function:H t( )

H t h x dx
t

( ) ( ) .= ∫
0

Although the quantities may be defined for any continuous randomF t f t S t h t( ), ( ), ( ), ( )   and  

variable, and are usually seen in the context of survival data since they are particularlyS t( ) h t( )
suited to its analysis.

Notice as well that given any one of the four quantities, the other three are easily obtained. Thus
specifying the survival function, for instance, also determines what the cumulative distribution
function, probability density function and hazard function are.

In addition, the following relationships hold:
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II.   EXAMPLES

A.   VENTILATING TUBE DATA

One-third of pediatric visits arise due to inflammation of the middle ear, also known as otitis
media, resulting in a substantial health care burden. In addition, concerns have surfaced relating to



long-term language, behavior and speech development. Unsuccessful treatment with various drug
therapies often leads to surgical intervention, in which tubes are placed in the ear. It has been shown
that ventilating tubes are successful in preventing otitis media as long as the tubes are in place and
unblocked. 

Le and Lindgren (1996) studied the time of tube failure (displacement or blockage) for 78
children. Each child was randomly assigned to be treated with placebo or prednisone and
sulfamethoprim. The children were observed from February 1987 to January 1990, resulting in the
possibility of censored failure times for children not experiencing tube failure before the completion
of the study. The data are listed below (Table 7.2), where the following coding is used for brevity:

1 - child [4 digit ID]  (data set variable )
2 - group [2 = medical, 1 = control]  (data set variable treat)
3 - ear [1 = right, 2 = left]  (data set variable )
4 - time, in months  (data set variable )
5 - status [1 = failed, 0 = censored]  (data set variable )

Table 7.2
Ventilating Tube Data (Le and Lindren, 1996)

     1              2        3          4              5        1              2        3         4               5         1            2      3          4             5

1001 1 1 3.10 1 1065 1 1 0.80 1 1031 2 1 24.30 1
2 4.80 0 2 0.80 1 2 18.80 1

1003 1 1 12.70 1 1066 1 1 13.30 1 1033 2 1 15.20 1
2 6.00 1 2 13.30 1 2 12.50 1

1008 1 1 3.10 1 1071 1 1 0.80 1 1036 2 1 33.00 1
2 6.40 1 2 8.10 1 2 12.10 1

1009 1 1 8.50 1 1073 1 1 3.00 1 1037 2 1 13.10 1
2 12.70 1 2 15.80 1 2 0.70 1

1010 1 1 9.10 1 2003 1 1 9.40 1 1039 2 1 6.10 1
2 9.10 1 2 9.40 1 2 17.10 0

1014 1 1 0.50 1 2005 1 1 3.10 1 1041 2 1 9.50 1
2 5.10 1 2 3.10 1 2 3.40 1

1015 1 1 18.00 1 2009 1 1 7.60 1 1042 2 1 15.10 1
2 15.00 1 2 10.10 1 2 17.80 1

1019 1 1 6.00 1 2011 1 1 5.50 1 1047 2 1 5.80 1
2 6.00 1 2 5.50 1 2 5.80 1

1020 1 1 6.40 1 2015 1 1 0.70 1 1048 2 1 0.60 1
2 6.40 1 2 0.70 1 2 3.00 1

1022 1 1 4.40 0 2016 1 1 7.00 1 1049 2 1 2.80 1
2 1.30 1 2 7.00 1 2 1.60 1

1024 1 1 12.80 1 2018 1 1 11.70 1 1050 2 1 6.20 1
2 12.80 1 2 3.10 1 2 9.00 1

1025 1 1 8.80 1 2020 1 1 14.30 1 1058 2 1 8.70 1
2 8.80 1 2 3.20 1 2 3.40 1

1027 1 1 2.80 0 1002 2 1 15.40 1 1059 2 1 20.90 0
2 2.80 0 2 9.20 1 2 3.40 1

1032 1 1 9.30 1 1004 2 1 9.30 1 1061 2 1 9.20 1
2 27.10 1 2 9.30 1 2 6.00 1

1034 1 1 6.10 1 1006 2 1 15.00 1 1063 2 1 6.40 1



2 6.10 1 2 0.90 1 2 14.30 0
1035 1 1 17.90 1 1007 2 1 15.00 1 1067 2 1 8.80 1

2 20.90 1 2 11.90 1 2 8.80 1
1038 1 1 9.30 1 1011 2 1 17.80 1 1068 2 1 18.50 1

2 3.10 1 2 12.20 1 2 13.30 1
1040 1 1 2.90 1 1012 2 1 5.90 1 1069 2 1 12.20 1

2 1.00 1 2 8.70 1 2 12.20 1
1043 1 1 9.10 1 1013 2 1 8.90 1 1072 2 1 12.50 0

2 9.10 1 2 12.60 1 2 8.80 1
1044 1 1 5.80 1 1016 2 1 0.60 1 2001 2 1 8.50 1

2 9.30 1 2 5.70 1 2 21.70 1
1045 1 1 2.90 1 1017 2 1 6.00 1 2004 2 1 1.80 1

2 1.10 1 2 9.40 1 2 20.70 1
1046 1 1 6.20 1 1018 2 1 14.60 1 2007 2 1 6.20 1

2 9.20 1 2 9.90 1 2 9.00 1
1055 1 1 1.10 0 1021 2 1 12.10 1 2010 2 1 9.70 1

2 1.10 0 2 2.90 1 2 11.10 0
1060 1 1 6.00 1 1023 2 1 3.00 1 2012 2 1 6.00 1

2 10.70 1 2 3.00 1 2 6.00 1
1062 1 1 6.20 1 1026 2 1 24.90 1 2013 2 1 11.90 1

2 6.20 1 2 8.70 1 2 8.80 1
1064 1 1 9.30 1 1028 2 1 5.20 1 2017 2 1 8.70 1

2 19.30 0 2 9.00 1 2 8.70 1

In addition, it is anticipated that the failure times of the two ears from one child will be similar, and
in fact, correlated. This particular aspect of the Ventilating Tube Data will be further discussed when
the topic of Correlated Survival Data arises.

B. CYSTIC OVARY DATA

This study examined the effectiveness of hormonal therapy for treatment of cows with cystic
ovarian disease. Two groups of cows were randomized to hormonal treatment and one group
received placebo. The time of cyst disappearance was then recorded, with the possibility of censored
data due to not all cysts disappearing. The data are as follows (Table 7.3):

Table 7.3
Cystic Ovary Data (a)

Treatment 1 Treatment 2 Placebo

4,6,8,8,9,10,12 7,12,15,16,18,22* 19,24,18*,20*,22*,27*,30*

(* means censored observation)

For statistical analyses and computer analyses with SAS, the data are conveniently re-expressed as
shown (Table 7.4):



Table 7.4
Cystic Ovary Data (b)

Cow Treatment Time Censor Cow Treatment Time Censor

1
2
3
4
5
6
7
8
9
10

1
1
1
1
1
1
1
2
2
2

4
6
8
8
9
10
12
7
12
15

1
1
1
1
1
1
1
1
1
1

11
12
13
14
15
16
17
18
19
20

2
2
2
3
3
3
3
3
3
3

16
18
22
19
24
18
20
22
27
30

1
1
0
1
1
0
0
0
0
0

(censor = 1 if failure, censor = 0 if no failure)

C. BREAST CANCER DATA

An increase in breast cancer incidence in recent years has resulted in a substantial portion of
health care dollars being directed towards research in this area. The aims of such research include
early detection through mass screening and recurrence prevention through effective treatments. The
focus of this investigation was to determine which prognostic measures were predictive of breast
cancer recurrence in female patients. 

At the start of the study, 73 patients were enrolled and measurements were taken for the following
variables: 

1-patient identification number (data set variable id)
2-age at the start of the study in years (data set variable age)
3-size of original tumor [small=0 or large=1] (data set variable tsize)
4-mean AgNOR count [0=low, 1=high] (data set variable mag) 
5-proliferative AgNOR index [0=low, 1=high] (data set variable pag)
6-time until breast cancer recurrence in months (data set variable time)
7-breast cancer recurrence [0=no, 1=yes] (data set variable censor).

The data are as follows (Table 7.5):



Table 7.5
                                                                         Breast Cancer Data

          1           7         6            5           4          2           3          1          7           6          5           4           2          3

        1         0       130         0         0        57         0
         2         0       136         1         1        67         0
         3         0       117         0         0        65         1
         4         1        50          1         1        45         0
         5         0       106         0         1        63         0
         6         0       103         0         0        63         0
         7         1        86          1         1        61         1
         8         0        63          1         1        67         1
         9         0       120         0         0        43         0
       10         0       121         1         1        49         1
       11         1       108         1         1        66         1
       12         0       121         0         0        68         0
       13         0       109         0         1        68         1
       14         0       111         0         0        52         0
       15         1        60          1         1        68         1
       16         0       106         0         1        50         0
       17         0       108         1         1        70         1
       18         0       105         0         0        50         0
       19         0        98          1         1        56         1
       20         1       108         1         1        70         0
       21         0        62          0         1        65         0
       22         0       106         1         1        63         0
       23         1        95          1         0        66         1
       24         0        94          1         1        44         1
       25         0        19          0         1        57         0
       26         1       103         1         1        71         0
       27         0        60          0         0        59         1
       28         0        91          1         1        66         1
       29         0        70          1         1        57         1
       30         0        65          0         0        54         0
       31         0        91          1         1        64         1
       32         1        86          1         1        45         0
       33         0        90          0         0        39         1
       34         0        87          0         1        51         0
       35         1        89          0         1        57         1
       36         1        89          1         1        27         0

      
      

       37         0        92         1         1        79         0
       38         0        48         1         1        41         1
       39         0        89         0         0        69         0
       40         0        95         0         1        58         0
       41         0        91         0         0        37         1
       42         1        47         1         1        47         1
       43         0        75         0         0        47         1
       44         0        49         0         0        74         0
       45         0        66         1         1        67         0
       46         0        65         0         1        45         0
       47         0        22         0         0        67         1
       48         0        73         0         0        66         0
       49         0        67         0         0        69         0
       50         0        75         1         1        53         1
       51         0        71         1         1        38         1
       52         0        80         0         0        61         0
       53         0        25         0         1        75         1
       54         0        67         0         0        73         1
       55         0        74         0         1        45         1
       56         1        64         0         0        45         0
       57         0        64         0         0        65         1
       58         1        41         1         1        73         0
       59         1        70         1         1        48         0
       60         1        57         1         1        53         1
       61         0        59         0         0        45         1
       62         0        53         0         0        73         0
       63         0        69         0         0        35         0
       64         0        55         0         1        47         1
       65         1        58         1         1        66         0
       66         0        68         0         0        46         1
       67         0        60         0         0        60         0
       68         1       126         1         1        55         0
       69         0       127         1         1        60         0
       70         0       126         0         0        60         1
       71         0       102         0         0        64         1
       72         0       122         1         1        49         0
       73         0       100         1         1        50         1

The above three examples will be used throughout the chapter to demonstrate methods of survival
data analysis using SAS.



III. THE ANALYSIS OF SURVIVAL DATA

Two distinct methodologies exist for the analysis of survival data : non-parametric
approaches in which no distributional assumptions are made for the previously defined probability
density function  and parametric approaches in which distributional restrictions are imposed.f t( )

Each methodology will be discussed separately.

A. NON-PARAMETRIC METHODS

1. Methods for Non-censored Data

Estimates of the survival function, probability density function and hazard function exist for
the specific case of non-censored data. They are given as follows:

i) Estimate of the survival function for non-censored data

!( )S t
t= num ber of p a tien ts  su rv iv ing longer than  

to ta l n um ber o f patien ts

ii) Estimate of the probability density function for non-censored data

! ( )f t
t= num ber of pa tien ts  d ying  in  the  in terval beg inn ing  a t tim e 

(to ta l n u m b er o f patien ts)(in terval w id th )

iii) Estimate of the hazard function for non-censored data

!( )
)(

h t
t

t

t

= num ber of pa tien ts  dying  in  th e  in terval beg inn ing  a t tim e 

(num ber o f p atien ts  su rv iv ing  a t in terval w id th )

      =
num ber of pa tien ts  d ying  per un it tim e in  the  in terval

num ber o f p a tien ts  su rv iv ing a t 

It is also possible to define the average hazard rate, which uses the average number of survivors at
the interval midpoint to calculate the denominator of the estimate:

! ( )
) . (

*h t
t

=
−

num ber of p a tien ts  dying  per un it tim e in  the  in terval

(num ber o f patien ts  su rv iv ing  a t num ber o f death s in  the in terval)5

The estimate given by results in a smaller denominator and thus a larger hazard rate. is! ( )h t∗ ! ( )h t∗

used primarily by actuaries.



Obviously different methods are required in the presence of censored data. These methods are now
discussed.

2. Methods for Censored Data

The Kaplan-Meier (1958) estimate of the survival function in the presence of censored data,
also known as the Product-Limit estimate, is given by 

! ( )S k p p p p k= × × × ×1 2 3 "

where  years and   denotes the proportion of patients surviving the  year conditional onk ≥ 2 p i i th

their survival until the  year. In practice, is calculated using the following formula:( )i th−1 !( )S k

           (7.1)!( )
( )

S t
n r

n rt tr
= −

− +≤Π
1

where the survival times have been placed in ascending order so that  for  the( ) ( ) ( )t t t n1 2≤ ≤ ≤" n

total number of individuals under study and  runs through the positive integers such that r ( )t tr ≤

and  is uncensored. ( )t r

Table 7.6 is used in calculation of the product-limit survival estimate:

Table 7.6
General Calculations for Product-Limit Survival Estimate

 Ordered Survival Times         Rank           Rank         Number in Sample                 ( )r ( )n
n r

n r

−
− +1

!( )S t

(censored (*) and uncensored)                       (uncensored               
                                                                      observations)
_______________________________________________________________________________________

                                             1                 1                                  ( )t 1 n

                *                           2                 /                                                            /                   /( )t 2 n −1

                                             3                 3                               ( )t 3
n − 2

                                                                                                   # # # #

                                             n                n                             ( )t n 1



The last column of the table is filled in after calculation of . Notice that the estimate of then r

n r

−
− +1

survival function at time  is available only for those times at which the failure was not censored.t
In Table 7.2, the second failure time was deemed censored to exemplify this.

Example 7.1: The Kaplan-Meier (product-limit) estimate of the survival function for the cystic
ovary data is calculated within each treatment group as follows (Table 7.7):

Table 7.7 
KM Survival Estimate for Cystic Ovary Data

Treatment
Ordered

Survival Times
*censored

Rank
Rank of

uncensored
observations

Number 
in

Sample

n r

n r

−
− +1

!( )S t

1

4
6
8
8
9

10
12

1
2
3
4
5
6
7

1
2
3
4
5
6
7

7
6
5
4
3
2
1

6/7
5/6
4/5
3/4
2/3
 1/2

0

0.85
(0.83)(0.85)=0.71
(0.80)(0.71)=0.56
(0.75)(0.56)=0.42
(0.66)(0.42)=0.28
(0.50)(0.28)=0.13

0

2

7
12
15
16
18

 22*

1
2
3
4
5
6

1
2
3
4
5
/

6
5
4
3
2
1

5/6
4/5
3/4
2/3
1/2

/

0.83
(0.80)(0.83)=0.66
(0.75)(0.66)=0.49
(0.66)(0.49)=0.33
(0.50)(0.33)=0.16

/

control

 18*
19

 20*
 22*
24

 27*
 30*

1
2
3
4
5
6
7

/
2
/
/
5
/
/

7
6
5
4
3
2
1

/
5/6

/
/

2/3
/
/

/
0.83

/
/

(0.66)(0.83)=0.55
/
/

Example 7.2: It is informative to determine the product limit estimates of the survival function for
the breast cancer data using the SAS computer package.

The following SAS statements produce the chart of product limit survival estimates for the breast
cancer data:



proc lifetest data = agnor;
time time*censor(0);
run;

            

With output as shown below:                         

                             
The LIFETEST Procedure

                        Product-Limit Survival Estimates

                   Survival
                                          Standard     Number      Number

            TIME     Survival     Failure      Error      Failed       Left    

        0.000       1.0000           0           0        0          73
       19.000*           .           .           .        0          72
       22.000*           .           .           .        0          71
       25.000*           .           .           .        0          70
       41.000       0.9857      0.0143      0.0142        1          69
       47.000       0.9714      0.0286      0.0199        2          68
       48.000*           .           .           .        2          67
       49.000*           .           .           .        2          66
       50.000       0.9567      0.0433      0.0245        3          65
       53.000*           .           .           .        3          64
       55.000*           .           .           .        3          63
       57.000       0.9415      0.0585      0.0284        4          62
       58.000       0.9263      0.0737      0.0317        5          61
       59.000*           .           .           .        5          60
       60.000       0.9109      0.0891      0.0348        6          59
       60.000*           .           .           .        6          58
       60.000*           .           .           .        6          57
       62.000*           .           .           .        6          56
       63.000*           .           .           .        6          55
       64.000       0.8943      0.1057      0.0379        7          54
       64.000*           .           .           .        7          53

      
       69.000*           .           .           .        7          46
       70.000       0.8749      0.1251      0.0417        8          45
       70.000*           .           .           .        8          44

      
       80.000*           .           .           .        8          38
       86.000            .           .           .        9          37
       86.000       0.8288      0.1712      0.0507       10          36
       87.000*           .           .           .       10          35
       89.000            .           .           .       11          34
       89.000       0.7815      0.2185      0.0578       12          33
       89.000*           .           .           .       12          32

       94.000*           .           .           .       12          26
       95.000       0.7514      0.2486      0.0629       13          25
       95.000*           .           .           .       13          24

      
      102.000*           .           .           .       13          21
      103.000       0.7156      0.2844      0.0693       14          20
      103.000*           .           .           .       14          19

     



      106.000*           .           .           .       14          15
      108.000            .           .           .       15          14
      108.000       0.6202      0.3798      0.0869       16          13
      108.000*           .           .           .       16          12

      120.000*           .           .           .       16           8
     
      122.000*           .           .           .       16           5
      126.000       0.4962      0.5038      0.1309       17           4
      126.000*           .           .           .       17           3
     
      136.000*           .           .           .       17           0
                             * Censored Observation

NOTE: The last observation was censored so the estimate of the mean is biased.

Notice that the survival function is only estimated at death times which are not censored. Some of
the censored observations have been deleted from the chart for brevity.

In addition, summary statistics are provided concerning sample size and percent of censored
observations:

     Summary of the Number of Censored and Uncensored Values

    Total     Failed   Censored  %Censored

      73        17        56       76.7123 

So far, the breast cancer data analysis has not distinguished between the AgNOR groups when
looking at survival. Adding a ‘strata’ statement to the SAS program as shown below results in the
calculations shown above being performed within each level of the variable specified (in this case,
pag) in the strata statement:

proc lifetest data = agnor plots = (s) graphics;
time time*censor(0);
strata pag;
symbol1  v = none  color = black  line = 1;
symbol2  v = none color = black line = 2;
run;

The product limit survival estimates are then calculated for failures within each pag group as shown
(note that some of the censored observations not contributing estimates of survival have been
removed from the charts for brevity):

                       



 Product-Limit Survival Estimates
                                     PAG = 0

                                          Survival
                                          Standard     Number      Number
         TIME     Survival     Failure      Error      Failed       Left

        0.000       1.0000           0           0        0          40
       19.000*           .           .           .        0          39
      
       62.000*           .           .           .        0          30
       64.000       0.9667      0.0333      0.0328        1          29
       64.000*           .           .           .        1          28
      
       87.000*           .           .           .        1          17
       89.000       0.9098      0.0902      0.0632        2          16
       89.000*           .           .           .        2          15
      
      130.000*           .           .           .        2           0
                             * Censored Observation
NOTE: The last observation was censored so the estimate of the mean is biased.

                       

 Product-Limit Survival Estimates
                                     PAG = 1

                                          Survival
                                          Standard     Number      Number
         TIME     Survival     Failure      Error      Failed       Left

        0.000       1.0000           0           0        0          33
       41.000       0.9697      0.0303      0.0298        1          32
       47.000       0.9394      0.0606      0.0415        2          31
       48.000*           .           .           .        2          30
       50.000       0.9081      0.0919      0.0506        3          29
       57.000       0.8768      0.1232      0.0577        4          28
       58.000       0.8455      0.1545      0.0636        5          27
       60.000       0.8141      0.1859      0.0685        6          26
       63.000*           .           .           .        6          25
       66.000*           .           .           .        6          24
       70.000       0.7802      0.2198      0.0736        7          23
       70.000*           .           .           .        7          22
      
       86.000            .           .           .        8          19
       86.000       0.7022      0.2978      0.0844        9          18
       89.000       0.6632      0.3368      0.0883       10          17
       91.000*           .           .           .       10          16

       94.000*           .           .           .       10          13
       95.000       0.6122      0.3878      0.0951       11          12
       98.000*           .           .           .       11          11
      100.000*           .           .           .       11          10
      103.000       0.5510      0.4490      0.1034       12           9
      106.000*           .           .           .       12           8
      108.000            .           .           .       13           7
      108.000       0.4132      0.5868      0.1146       14           6
      108.000*           .           .           .       14           5



      121.000*           .           .           .       14           4
      122.000*           .           .           .       14           3
      126.000       0.2755      0.7245      0.1360       15           2
      127.000*           .           .           .       15           1
      136.000*           .           .           .       15           0
                             * Censored Observation
NOTE: The last observation was censored so the estimate of the mean is biased.

Summary of the Number of Censored and Uncensored Values
              PAG           Total     Failed   Censored   %Censored

  0              40          2         38      95.0000
              1              33         15         18      54.5455

  Total          73         17         56      76.7123

The plots statement in the above SAS program produces a graph depicting survival in each pag
group, as shown in Figure 7.1

Figure 7.1 Survival function curve for breast cancer recurrence data using Kaplan-Meier Product
Limit estimator  

Due to the fact that the survival is always higher in the group pag = 0, it appears that this group
experiences a much more favorable outcome.

The survival curves for the ventilating tube data showing the Kaplan-Meier cancer recurrence time
estimates within the treatment and medical groups are shown in Figure 7.2.



Figure 7.2 Survival function curve for ventilating tube data using Kaplan-Meier Product
Limit estimator 

Once again, the time until ventilating tube failure is longer for the medical group, implying greater
effectiveness than the control in preventing tube displacement.

Part of the output from the above SAS commands includes calculation of the Log-Rank test. This
aspect will be discussed subsequently. 

At this point we have summarized measures describing survival for non-censored and
censored data. Our graph indicated longer times until breast cancer recurrence in the low
proliferation AgNOR group for the breast cancer data and longer times until tube displacement in
the medical group for the ventilating data. However, in order to determine whether there is a
significant difference between groups in a data set, a statistical test must be used for comparison of
time until failure. Without any prior knowledge of the distribution which may be appropriate for the
data, a non-parametric (distribution-free) test is preferable. A test designed for this purpose is the
Log-Rank test (Peto and Peto (1972)).

B.  NON-PARAMETRIC SURVIVAL COMPARISONS BETWEEN GROUPS

1. The Log-Rank Test for Comparisons Between Two Groups

Suppose that we have two groups, A and B, each given different treatments and it is of
interest to compare the survival in these two groups. For a hypothesis test of 
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The test statistic is calculated by constructing a table of the following nature (Table 7.8):



Table 7.8
Calculations for Log-Rank Test Statistic
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The squares of the sum of column (1) and the sum of column (2) are then used in calculation of
the statistic. Under the null hypothesis of no differences between groups A and B, the test
statistic is distributed as .χ( )1

2

Example 7.3: The SAS program described above (with the strata = pag statement) calculates the
log-rank test to determine whether differences are present in survival for patients
with a high proliferative AgNOR index (pag = 1) and those with a low index (pag =
0). The output is as shown:

  Test of Equality over Strata

                                                    Pr >
                     Test      Chi-Square    DF  Chi-Square

                     Log-Rank     10.3104     1      0.0013
                     Wilcoxon      8.6344     1      0.0033
                     -2Log(LR)    12.7162     1      0.0004

The p-value for the Log-Rank test (p=0.0013) indicates that there are significant differences in
the two AgNOR groups with respect to survival. This is in agreement with the survival graph
previously examined, which implied substantially better survival for the low index group (pag =
0).

Notice that the above SAS output also provides output for the Wilcoxon and -2 Log(LR) tests of
equality over the strata AgNOR. The Wilcoxon test statistic has a similar form to the Log-Rank;
however the Wilcoxon test weights each term in the summation over the various death times by
the number of individuals alive at that death time, thus giving less weight to terms where few
women had not experienced breast cancer recurrence. For general use, the Log-Rank test is most
appropriate when the assumption of proportional hazards between treatment groups holds. The
topic of proportional hazards will be discussed subsequently.



2. The Log-Rank Test for Comparisons Between Several Groups

Often it is desirable to make comparisons of the survival between three or more groups;
in this case, an extension of the Log-Rank test is used.

If there are  groups we wish to make comparisons between, then the following are calculatedq
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In addition, the variances and covariances are needed and are given by the formula
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The variance-covariance matrix is then given by 
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the test statistic given by 

 (7.3)χ 2 1= ′ −U V UL L L

has a  distribution under the null hypothesis, where q is the number of strata.χ ( q −1 )

2

For calculation of the stratified log-rank test in SAS, the same strata statement is used as for
calculation of the Log-Rank test between two groups. A stratified test will be performed
automatically for variables having more than two levels.

Example 7.4: The following SAS program (with the strata = group statement) calculates the Log-
Rank test to determine whether differences are present in time until cyst
disappearance for cows treated with hormone treatment 1, hormone treatment 2 and
the control. The program and Log-Rank portion of the output are as shown:

proc lifetest;
time weeks*censor(0);
strata group;

run;
                         
SAS output:
                  Test of Equality over Strata
                                                     Pr >
                     Test      Chi-Square    DF   Chi-Square

                     Log-Rank     21.2401     2      0.0001
                     Wilcoxon     17.8661     2      0.0001
                     -2Log(LR)    10.6663     2      0.0048



In this case, the p-value for the Log-Rank test (p=0.0001) indicates that there are significant
differences in the three groups with respect to time until cyst disappearance.

Addition of the statement plots = (s) at the end of the  proc lifetest  statement shown above
would produce a survival curve with each of the three groups graphed separately. 

C.   PARAMETRIC METHODS

All parametric methods involve specification of a distributional form for the probability
density function, . This in turn specifies the survival function  and the hazard functionf t( ) S t( )

using the relationships defined previously. The two parametric models to be discussed are theh t( )
Exponential and the Weibull. Their survival and hazard functions are given and their properties
reviewed. 

1. The Exponential Model for Survival Analysis

An exponential density function is given by

                                      (7.4)
f t t t

t

( ) ex p ( ) ,= − ≥ >
<

λ λ λ    

       = 0                     

0 0

0
so that 

S t t t( ) ex p ( )= − ≥λ         0

and
.h t t( ) = ≥λ                      0

Notice that the hazard function is independent of time, implying the instantaneous conditional failure
rate does not change within a lifetime. This is also referred to as the memoryless property of the
Exponential distribution, since the age of an individual does not affect the probability of future
survival. When , the distribution is referred to as the unit exponential.λ = 1

In practice, most failure times do not have a constant hazard of failure and thus the
application of the Exponential model for survival analysis is limited. The Exponential model is in
fact a special case of a more general model which is widely applicable: the Weibull model. 

2. The Weibull Model for Survival Analysis

The Weibull density function is given by 

                            (7.5)f t t t t( ) exp ( ) ,= − ≥ ≥−λγ λ γ λγ γ1 0     , 0



giving 
                                  S t t( ) ex p ( )= −λ γ

and
                    .h t t( ) = −λγ γ 1

In the above,  and are the scale and shape parameters, respectively. The specific case of λ γ γ = 1

defines the Exponential model with constant hazard previously discussed,  implies a hazardγ > 1

which increases with time and  yields a hazard decreasing with time. It is evident that theγ < 1

Weibull distribution is widely applicable since it allows modeling of populations with various types
of failure risk. 

Example 7.5: It is desired to fit a) an exponential model and b) a Weibull model to the breast
cancer data discussed. This is done using the ‘proc lifereg’ statement in SAS with
specification of exponential and Weibull models:

a)  proc lifereg data = agnor;
model time*censor(0) = pag age tsize / dist = exponential;

b)  proc lifereg data = agnor;
model time*censor(0) = pag age tsize / dist = weibull;

Note that the model statement specifies the dependent variable as time*censor(0), where time is the
variable in the analysis recording the failure or censoring time, censor is an indicator variable
denoting whether or not a failure time is censored, and the number in brackets indicates the coded
value of the censor variable indicating an observation was censored.

The SAS output is as shown:

a) Exponential Model

Log Likelihood for EXPONENT -36.73724081

Lifereg  Procedure

Variable  DF   Estimate   Std Err   ChiSquare  Pr>Chi  Label/Value

INTERCPT   1  6.63279679  1.352221   24.06015  0.0001  Intercept
PAG        1  -2.1810958  0.755017   8.345181  0.0039
AGE        1  0.01069086  0.020383   0.275112  0.5999
TSIZE      1  0.39384413  0.494546   0.634214  0.4258
SCALE      0          1        0                   Extreme value scale   
                                                   parameter

      Lagrange Multiplier ChiSquare for Scale        . Pr>Chi is  .    .



b) Weibull Model
                          

Log Likelihood for WEIBULL -26.88658984
                                

Lifereg  Procedure

Variable   DF  Estimate   Std Err  ChiSquare  Pr>Chi  Label/Value

INTERCPT   1  5.10839008  0.473726  116.2824  0.0001  Intercept
PAG        1  -0.6610495  0.281155  5.528123  0.0187
AGE        1  0.00576767  0.007038  0.671549  0.4125
TSIZE      1  0.03470751  0.162151  0.045815  0.8305
SCALE      1  0.32047388  0.065261                   Extreme value scale 

                                                           parameter

As was noted using the log-rank test and the survival curves, a significant difference exists in the
failure times between those with a high AgNOR proliferative index and those with a low index, both
when the failure times are modeled to be exponential and when they are modeled as Weibull.
This is reflected in the p-values of 0.0039 and 0.0187 for the exponential and Weibull models,
respectively. The other variables included in the model, age and tumor size, appear to have little
effect on the time of breast cancer recurrence. The log-likelihood values of -36.74 and -26.89
indicate that the Weibull distribution is slightly better at modeling the breast cancer recurrence times.
This may be due to the fact that the previously discussed restrictions imposed by an exponential
model (i.e. a constant hazard rate) may not be valid when examining disease recurrence. In such a
situation, a distribution with a hazard function that changes over time is preferable. 

Graphical Assessment of Model Adequacy

The fit of the exponential and Weibull models to the breast cancer data may also be assessed
graphically using the following SAS program:

proc lifetest data = agnor  outsurv = a;
time time*censor(0);

run;

data graph;
set a;
s = survival;
logs = log(s);
loglogs = log(-log(s));
logtime = log(time);

run;



proc gplot;
symbol value = none   i = join;
plot logs*time loglogs*logtime;

run;

The first program is to calculate the product limit estimates of the survival function and to output
them to the data set a. The second program calculates the log of survival, the log of 
(-log(survival)) and the log of the failure time variable.  The third SAS program produces two
graphs, with the survival times joined to form a linear plot for the variables log of survival versus
time and log(-log(survival)) versus log time. The graphs (Figures 7.3 and 7.4) look as follows:

Figure 7.3 Plot showing the goodness of fit of the exponential model for breast cancer data.

Figure 7.4 Plot showing the goodness of fit of the Weibull model for breast cancer data.



A straight line indicates no departures from model adequacy. The above graphs appear to indicate
a better fit to the Weibull model for the breast cancer data, as did the log-likelihood value.

The reason we expect to see a straight line relationship between log(survival) and time if the
exponential model is adequate and log(-log(survival)) and log(time) if the Weibull model is
adequate is as follows: 

Recall the survival functions for the exponential and Weibull models were given by 

      S(t) ( t)   = −exp λ

and
         ,S t t( ) ex p ( )= −λ γ

respectively.

We rearrange the equations to obtain linear functions of t. Taking the log of each side in the
exponential model gives 

              lo g ( ( ))S t t= −λ    

which is now a linear function of t, so that a graph of the log of the survival estimates versus time
should be linear if the exponential model is adequate.

Similarly, rearranging the Weibull survival function gives

        lo g ( ( )) ( )S t t= −λ γ

so that upon taking the negative log, we have

        log[ log( ( ))] log log− = +S t tλ γ

which is now a linear function of t, so that a graph of the log of the -log(survival) estimates
versus log of time should be linear if the Weibull model is adequate.

The exponential and Weibull model adequacy graphs (Figures 7.5 and 7.6) are given below for
the ear data:



Figure 7.5 Plot showing the goodness of fit of the exponential model for ventilating tube data
using lambda = 0.1527.

Figure 7.6 Plot showing the goodness of fit of the Weibull model for ventilating tube data using
log(lambda)=-3.144 and gamma=1.36.

The above graphs imply the exponential model is an adequate choice for the ventilating tube data.



D.   SEMI-PARAMETRIC METHODS

1. The Cox Proportional Hazards Model

One positive feature of the parametric methods previously discussed is that specification of
a form for the probability density function allows the likelihood to be constructed. Maximum
likelihood estimates and standard errors may then be obtained for all parameters in the model.
However, the drawback in parametric modeling lies in the fact that it may not be desirable to specify
a probability distribution function for a particular set of data, making non-parametric calculations
more attractive. The ideal situation would involve no distributional restrictions on the density, yet
maximum likelihood estimates of regression parameters (and thus treatment effects) would be readily
available. An analysis with such properties may be performed using the Cox Proportional Hazards
Model (Cox, 1972). 

As its name implies, the Proportional Hazards Model is constructed by assuming that the
hazard function of the  individual is the product of a baseline hazard common to all individuals,i th

denoted  and a function of the covariate vector,   for that individual, :h t0 ( ) ix ϕ ( )x i

.                                                           (7.6)h t h t xi i( ) ( ) ( )= 0 ϕ

Since rearrangement yields the hazard ratio or relative hazard to be the non-negative function
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the covariate function is specified to be
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which is also non-negative.
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so that the proportional hazards model is a linear model for the log hazard ratio.

The partial likelihood for the proportional hazards model is given by
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where  is the risk set (those individuals alive) at the ordered death time, . Thus the( )R t j( ) j th
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likelihood takes the product over the j th ordered death times of terms of the form
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so that  is the ratio of the hazard for the individual who died at the  ordered death timeLi ( )β i th

divided by the sum of hazards for the individuals who were at risk when the  ordered deathi th

occurred. Notice that individuals with censored failure times do not contribute a term to the
likelihood, however, they are included in the risk sets.  Hence  may be expressed as L ( )β
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= 1 if the  ind iv idual fa ils  du ring  the  study

   = 0  if th e fa ilu re tim e of th e  ind iv idu al is  cen sored .

Taking the product over the  uncensored failure times in (7.7) is equivalent to taking the productj

over the  censored and uncensored failure times in (7.8) due to the indicator variable . n δi

Notice that the likelihood (7.8) is referred to as a partial likelihood due to the fact that it is based on
the product of probabilities of failure rather than official density functions. Maximum likelihood
estimation of the regression parameters  occurs by treating the partial likelihood given in (7.8) asβ
a true likelihood, so that differentiation of the log and subsequent maximization is possible. Variance
estimates are found using the matrix of partial second derivatives. Newton-Rhapson techniques are
required for the maximization.



2. Treatment of Ties in the Proportional Hazards Model

The proportional hazards model previously discussed implicitly assumes (due to its
continuous nature) that the exact time of failure or censoring is known for each individual under
study. For this situation, there are no ties in failure times. Such accuracy is not usually encountered
in practice, where frequently survival times are only available for the nearest day, week or month.
This may result in tied failure times in the data. Several methods exist for dealing with tied failure
times in the Cox Proportional Hazards model. Two will be discussed here.

Note that in the treatment of ties, it is assumed that 

i) there are  distinct deaths at  andr ( )t j r
j

, , . . . , =1

ii) there may be   deaths at  andd j ( )t
j

iii)  , where  are the covariate vectors of thes x x xj d j
= + + +1 2 . . . j r= 1, . . . , x x x d j1 2, , . . . ,

     individuals dying at .( )t
j

 
In addition, it is assumed that if an uncensored failure and a censored failure (i.e. a death and a drop-
out) occur at the same time, the uncensored failure occurs first, so that the discussion below focuses
on ties in uncensored failure times.

i) Breslow’s Method for Tied Failure Times

Breslow (1972) suggested the following approximation to the partial likelihood function to account
for tied failure times in the data:
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where all possible sequences of deaths are summed for the respective component of the likelihood
function. Breslow’s approximation has the advantage of being quite accurate when the number of
ties at a given death time is small and is simple to compute. 

ii) Cox’s Method for Tied Failure Times

To account for the presence of tied data, Cox (1972) suggested using a likelihood of the form
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where denotes a set of individuals drawn from . The denominator sum is over( )R t dj j( ; ) d j ( )R t j( )

all possible sets of  individuals sampled from the risk set without replacement. Notice that ifd j

=1 (meaning no ties in the data), Cox’s approximation reduces to the original partial likelihoodd j

proposed.

Example 7.6: We fit the Cox proportional hazards model to the breast cancer data with the
following SAS program:

proc phreg data = agnor;
model time*censor(0) = pag age tsize;

run;

The program produces the output shown below:

                              The PHREG Procedure

     Data Set: WORK.AGNOR
     Dependent Variable: TIME
     Censoring Variable: CENSOR
     Censoring Value(s): 0
     Ties Handling: BRESLOW

                            Summary of the Number of
                            Event and Censored Values

                                                       Percent
                     Total       Event    Censored    Censored

                        73          17          56       76.71

                     Testing Global Null Hypothesis: BETA=0

                   Without        With
    Criterion    Covariates    Covariates    Model Chi-Square

    -2 LOG L        121.174       108.867      12.306 with 3 DF (p=0.0064)
    Score              .             .         11.087 with 3 DF (p=0.0113)
    Wald               .             .          8.225 with 3 DF (p=0.0416)



                    

Analysis of Maximum Likelihood Estimates

                    Parameter     Standard      Wald         Pr >          Risk
 Variable   DF       Estimate       Error    Chi-Square   Chi-Square      Ratio

 PAG         1       2.086512      0.75574      7.62241       0.0058      8.057
 AGE         1      -0.018556      0.02149      0.74557       0.3879      0.982
 TSIZE       1      -0.175210      0.50803      0.11894       0.7302      0.839

Once again, the pag variable for proliferative AgNOR index implies there is a significant difference
(p = 0.0058) between survival for those with high and low scores, and that the variables age and
tumor size are not predictive of breast cancer recurrence (p = 0.982 and p = 0.839, respectively). In
addition, the positive parameter estimate of pag implies the hazard of breast cancer recurrence
becomes larger as the level of pag increases, meaning a greater hazard for the pag = 1 group versus
pag = 0.  The risk ratio of 8.057 for the pag variable indicates the hazard of breast cancer recurrence
is 8 times greater in the high AgNOR proliferative index group. 

SAS uses the Breslow method as the default for tie handling in the Cox proportional hazard model.

Example 7.7: We fit a stratified (by ear) Cox proportional hazards model to the ventilating tube
data with the following SAS program:

proc phreg data = ear;
model time*censor(0) = treat;
strata ear;

run;

The program produces the output shown below:

The PHREG Procedure

     Data Set: WORK.EAR
     Dependent Variable: TIME
     Censoring Variable: CENSOR
     Censoring Value(s): 0
     Ties Handling: BRESLOW

                            Summary of the Number of
                            Event and Censored Values

                                                                Percent
         Stratum    Ear       Total       Event    Censored    Censored

            1        1          78          73         5          6.41
2        2          78          71         7          8.97

Total  156         144        12          7.69



                     Testing Global Null Hypothesis: BETA=0

                   Without        With
    Criterion    Covariates    Covariates    Model Chi-Square

    -2 LOG L       985.448       981.182        4.266 with 1 DF (p=0.0389)
    Score              .             .          4.336 with 1 DF (p=0.0373)
    Wald               .             .          4.293 with 1 DF (p=0.0383)

                    Analysis of Maximum Likelihood Estimates

                    Parameter     Standard      Wald         Pr >       Risk
 Variable   DF      Estimate       Error    Chi-Square   Chi-Square     Ratio

 TREAT      1       -0.357598     0.17259      4.2932      0.0383       0.699

Notice that the stratified proportional hazards model implies there is a significant difference in time
to ventilating tube failure between the medical and control groups (p = 0.0383). The negative
coefficient of the parameter estimate implies the hazard of tube failure becomes lower as the
treatment category becomes higher, meaning the medical group (treat = 1) has a lower hazard than
the control (treat = 0). The risk ratio implies the hazard for children receiving medical treatment is
70% of the hazard for children receiving the control. Note that the correlation between the two ears
in the sample for each child has not yet been accounted for in the analyses.

3. Time Dependent Covariates in the Cox Proportional Hazards Model

Until this point in the discussion, we have assumed that the covariates,  included in thex i

model did not change with time. This assumption is quite important because it ensured that an at risk
individual’s contribution to the denominator of the partial likelihood would be the same regardless
of the time of the failure, meaning that the covariate value could be assessed solely at the beginning
of the study. Covariates of this nature include sex, height and race. However, often it may be of
interest to examine covariates that can change over time, such as blood pressure, weight, white blood
cell count and cigarette smoking. In this case, several modifications of the hazard and partial
likelihood functions are required. They are discussed subsequently.

Recall the original definition of the proportional hazard function (7.6) as giving the hazard
of individual  as the product of a baseline hazard common to all individuals and a function of thei
covariates for that individual. For the case of time dependent covariates, the proportional hazard
model is

h t h t x ti i( ) ( ) ex p ( ( ))= 0 β

where  now becomes the baseline hazard for an individual with all covariate values equal toh t0 ( )

zero at time zero and throughout the study. In addition, the relative hazard is 
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which is a function of time ( ), so that the hazard ratio over time is not a constant function. Thist
means the hazards can no longer be proportional.

The partial likelihood as a function of time dependent covariates becomes
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so that covariate values must be known for each individual in the risk set at the time of the respective
death  i.e. the blood pressure of individual must be known at the time of death of individual  ink j
order to include them in the risk set at that time.

Although use of time dependent covariates in this fashion complicates the study design by
requiring measurements on all individuals at each death time, one can think of many situations where
inferences made using time dependent covariates would not only be useful but absolutely necessary.
For example, blood pressure may be considered to be a required covariate when examining time of
stroke or heart attack, or glucose level when examining time of diabetic seizure. A more detailed
discussion of analysis of survival data with time dependent covariates is given by Collett (1994) and
Lawless (1982).

IV.  CORRELATED SURVIVAL DATA

As with all types of response variables, techniques must be available for analyses performed
on correlated time to event data. The complexity of studies involving multiple treatment centres,
family members and measurements repeatedly made on the same individual requires methods to
account for correlation in the data. Such is the case for any type of response, be it continuous, binary
or a time of event. Use of the multivariate normal distribution allows correlation to be accounted for
in continuous data, where techniques are well established. For the situation of binary responses, work
over the past few decades has resulted in tests adjusted for correlation in the data. However, for the
time to event case, methods of accounting for correlation in the data have only recently been
developed, reflecting the fact that time to event models are themselves quite new.

As mentioned earlier, correlation is anticipated between outcomes in certain situations.
Correlation due to the three most common types of studies will be discussed. For example, in multi-
centre clinical trials, the outcomes for groups of patients at several centres are examined. In some
instances, patients in a centre might exhibit similar responses due to uniformity of surroundings and



procedures within a centre. This would result in correlated outcomes at the level of the treatment
centre. For the situation of studies of family members or litters, correlation in outcome is likely for
genetic reasons. In this case, the outcomes would be correlated at the family or litter level. Finally,
when one person or animal is measured repeatedly over time, correlation will most definitely exist
in those responses. Within the context of correlated data, the observations which are correlated for
a group of individuals (within a treatment centre or a family) or for one individual (because of
repeated sampling) are referred to as a cluster, so that from this point on, the responses within a
cluster will be assumed to be correlated. 

These three types of studies are becoming increasingly common in biomedical study designs.
Thus it is essential to have methods of accounting for the resulting correlated data. Two methods
with existing programs in computer software packages are currently available: the Marginal
Approach and Frailty Models. They will be discussed subsequently and their properties contrasted.
Situations in which each method is desirable are discussed.

A.   MARGINAL METHODS

i) The GEE Approach

Similar to the Cox Proportional Hazards Model, a marginal proportional hazard function is
adopted for the individual in the cluster:j th i th

λ λ βij ijt t X( ) ( ) exp ( ' )= 0

.
The likelihood function of the  individual in the cluster is thenj th i th
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baseline hazard parameters. The fact that the censoring indicator variable, takes only the valuesδij

0 or 1 implies that is a Poisson likelihood in the random variable  with mean .µ µδ
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Regression parameter estimates are obtained using Poisson regression of   on   with offsetδij X ij

. The resulting MLE  is used to calculate the MLE of the baseline hazard parameter,lo g ( ( ))Λ 0 t !β



α, using the score equation. A subsequent Poisson regression yields an updated , which may be!β
used in calculation of an updated baseline hazard parameter estimate.  Iteration continues between
the two processes until convergence.

The method described above wherein iteration occurs between Poisson regression and score
equation calculations results in consistent regression parameter estimates, even when the data are
correlated. However, the variance estimates obtained using such methods are not robust when the
data occur in a clustered form and correlation is present within the cluster. It is for this reason that
the well known ‘sandwich estimates’ are used to compute robust variance estimates. The following
discussion focuses on the GEE (generalized estimating equation) approach to obtaining robust
variance estimates for clustered survival data.

Define the covariance structure within the  cluster to be . Then  thei th V C o v Yi i= ( )

generalized estimating equations are of the form
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Example 7.8: Recall the Ventilating Tube Data, in which each child under study contributed two
failure times, one for each ear. Proper statistical analysis of the data requires the
correlated nature of the observations within a child be accounted for. Although
parameter estimates are not directly affected by the within cluster (child) correlation,
variance estimates are. Thus the SAS macro GEE is utilized to obtain parameter
estimates (regression, for given estimates of the parameter of the baseline hazard
function) and robust variance estimates.

data poisson;
set ear;
lam = .15267;
ttime = (time)**lam;

proc genmod data = poisson;
class treat patient;
model censor = treat / noint
dist = poisson
link = log
offset = ttime
pscale
type3;

repeated subject = patient / type = exch;
run;



/* GJE macro */

data temp1;
set ear;
%let xx=treat;
%include ‘f:surv.cox’;
%phlev (data=temp1,
             time=time,

                          event=censor,
            xvars=&xx,

      id=patient,
                          collapse=y,
                          outlev=temp2 outvar=temp3);

proc print data=temp3;
run;

Discussion of SAS program: 

Recall lambda = 0.15267 was found to be the estimate of for the time variable when theλ
exponential model was fit to the ear data. The option noint in the model statement specifies that a
regression model with no intercept should be fitted.  In addition, the Poisson specification requires
that the Poisson distribution be used, and the log link statement forces the relationship between the
mean and the covariates to be log-linear. The repeated statement at the end specifies the correlation
structure within the cluster to be exchangeable, meaning equal correlation is expected between any
two individuals within the cluster.

ii) The GJE Approach

The Generalized Jackknife Estimator (GJE) (Therneau, 1993) is similar to the Generalized
Estimating Equation approach in that both result in robust parameter estimate variances. The score
residual matrix and  Fisher’s Information Matrix are required to obtain these types of robustB
variance estimates. The motivation for the GJE approach is now discussed.

The partial likelihood function discussed earlier
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If   is the vector with  component  and  is the matrix with the entryB r th B Lr r=∂ β ∂βlog ( ) / A

in the column being , then the traditional sandwich estimate isr sth th row ,  −∂ β ∂β ∂β2 log ( ) /L
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For the GJE, the matrix  (containing one row per patient per cluster) is collapsed into  with oneB
~
B

row per cluster, where the row for the cluster has been summed over patients in that cluster. The
result is then the GJE robust variance estimate, given by 
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Note that underestimates  when the number of clusters is small.
~

V V

The collapse statement tells SAS to perform the analysis using only unique values of the id variable
(defined as patient). Thus only one observation per child is included. Outlev is the name of the SAS
data set containing the leverage residuals and outvar the name of the SAS output data set containing
the robust variance estimate. 

The GEE portion of the SAS output for the correlated ear data is as shown:

GEE Model Information

Description                    Value
Correlation Structure         Exchangeable
Subject Effect      Patient (78 levels)
Number of Clusters             78
Correlation Matrix Dimension         2
Maximum Cluster Size                 2
Minimum Cluster Size                 2

                    Analysis of GEE Parameter Estimates
  Empirical Standard Error Estimates

                       Emp. Std.   95%      
Parameter   Estimate   Error       Confidence Limits     Z       Pr>|Z|

     Lower      Upper

INTERCEPT   0.000         .          .          .        .          .         
TREAT 1    -1.4189     0.0444      -1.5058    -1.3319   -33.99   0.0000
TREAT 2    -1.4612     0.0354      -1.5305    -1.3918   -41.31   0.0000
Scale       0.3253        .          .          .        .          .

Note: the scale parameter was held fixed. 

The GJE portion of the SAS output for the correlated ear data is as shown:

Comparison of Cox model Beta, SE and chi-square to robust estimates

Wald chi-square is based on the robust estimates
Robust SE is based on the collapsed (summed within patient) L matrix

Variable  Parameter  SE  Robust  Chi-Square  Robust      Wald       df    p

          Estimate         SE                             Chi-Square  Chi-Square

 
treat    -0.35292  0.168 0.186     4.379      3.600        .        .   0.0578
wald         .       .     .         .          .         3.600      1   0.0578



The results indicate that the medical group experiences a significantly (p=0.0578) lower tube failure
(displacement) rate than does the control group.

Marginal models (such as the GEE) treat the correlation within a cluster as a nuisance,
meaning that it is indirectly accounted for in the analyses. Parameter estimates obtained using the
marginal approach have the desirable interpretation of applying to the whole population. This means
that an estimate of treatment effect, for example, would pertain to all clusters, or to all children in
the Ventilating Tube Data. 

Although parameter estimates under marginal models are easily calculated using available
computer software, they have one large drawback. Treatment of within cluster correlation as a
nuisance is an acceptable approach for situations in which the within cluster dynamics are not of
interest, such as within a hospital or farm. In these cases, we simply wish to account for the
correlation within patients in hospitals (treatment centres) or animals in farms. The correlation within
these units is not of interest on its own. This is in contrast to the situations involving family members
or repeated measuring on an individual. In these cases, the within cluster correlation represents
disease relationships within a family and propensity of an individual to experience multiple disease
events, respectively. This type of information is usually of primary or secondary importance for
studies of this nature, making treatment of within cluster correlation as a nuisance unjustified and
inaccurate. For example, knowledge of the tendency for a child to experience ventilating tube failure
in both ears would definitely be of interest due to the fact that the majority of children are bilateral
(have tubes in both ears). Another approach  is required for this type of situation in which within
cluster dynamics are of interest: Frailty Models.

B.  FRAILTY MODELS

Quite the opposite to marginal models, frailty models directly account for and estimate within
cluster correlation. A parameter estimate of within cluster propensity for events is obtained directly.

The random effects approach to frailty models involves the assumption that there are
unknown factors within a cluster causing similarity (homogeneity) in failure times within the cluster
and thus differences (heterogeneity) in failure times between different clusters. The reason such
factors are referred to as unknown is that if they were known to the investigator, they could be
included in the analysis, resulting in independence within a cluster. Frailty modeling (known as such
because it examines the tendency for individuals within a cluster to fail at similar times, or
experience similar frailties) involves specification of independence within a cluster, conditional on
a random effect. This random effect for the cluster,  is incorporated (conditionally) into thei th v i ,

proportional hazard function previously examined:

h t v v h t xi i ij( | ) ( ) ex p ( )= 0 β



which may be re-expressed as 

     ,h t v h t xi ij i( | ) ( ) ex p ( )= +0 β η

showing  actually behaves as an unknown covariate for the cluster in the model.v i i th

Using previous relationships between the survival and hazard function, we have the conditional
survival function as 
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The marginal (i.e. independent of ) likelihood, , is obtained through integration of thev i L ( , )γ β
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Inference on the regression parameters, baseline hazard parameter and dispersion parameter is then
possible using maximum likelihood procedures. Newton Rhapson methods are required for
estimation. 

Example 7.9: A macro was designed to obtain the maximum likelihood estimates shown in the
marginal likelihood above (7.12) for the ventilating tube data. It was desired to
examine the significance of treatment in delaying time to tube failure after accounting
for correlation within ears. Notice that maximum likelihood estimates are obtained
for the cluster level treatment effect,  the Weibull baseline hazard parameter,β,

and the dispersion parameter , but not for within cluster covariates due to theγ , τ
fact that each child received the same medicine in each ear.  The results are as shown:

  β    γ τ

Parameter Estimate -4.19 2.00 2.75

To examine the significance of treatment effect, the estimate of the standard error of  is requiredβ

and was found to be 0.479, so that , implying the treatment substantially decreases! / .!β
β

S = −8 7 5

time to tube failure after adjusting for the correlation between ears (p = 0.000). 

Frailty models have a great deal of potential in accounting for correlation arising in clustered
survival data (Hougaard, 1995). Although the Gamma frailty distribution has been examined here,
other possibilities include the Inverse-Gaussian and Log-Normal. The Inverse-Gaussian appears to
be particularly well-suited to the situation in which survival times are positively skewed as well as
correlated. However, these types of models have the downfall of being difficult to fit due to complex
distributional structure and divergence is not uncommon when attempting to maximize the
likelihood. On the positive side, a great deal of research is under way in the area of frailty models
( Liang et al., 1995, Sastry, 1997) and their introduction into commercial software (such as SAS) is
not far in the future.



Appendix I 

Average Milk Production per Month (kg) for 10 Ontario Farms 

Farm Milk Yield Farm Milk Yield 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 

32.33 
29.47 
30.19 
28.37 
29.10 
28.19 
30.28 
29.28 
30.37 
3 1.37 
34.38 
31.66 
30.09 
31.55 
3 1.06 
32.01 
28.28 
22.27 
25.24 
26.77 
29.42 
3 1.04 
29.89 
30.87 
26.33 
26.32 
26.74 
22.49 
23.16 
19.95 
19.70 
19.09 
24.57 
28.74 
28.36 
23.84 
35.73 
3 1.78 
25.60 
23.29 
28.14 
25.92 
26.07 
25.69 

4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 

27.25 
29.69 
28.29 
28.08 
29.69 
3 1.92 
29.5 1 
30.64 
30.75 
30.96 
29.95 
29.10 
27.5 1 
27.12 
26.74 
26.93 
30.05 
24.80 
26.84 
26.22 
23.79 
26.89 
26.84 
30.29 
29.17 
27.64 
27.5 1 
30.36 
26.35 
26.41 
27.51 
26.45 
26.07 
26.78 
29.18 
30.45 
30.68 
30.78 
30.58 
29.89 
24.72 
23.56 
24.43 
22.62 

Farm Milk Yield 

8 21.73 
8 2 1.90 
8 25.07 
8 23.49 
8 26.65 
8 27.08 
8 25.23 
8 27.20 
9 23.88 
9 22.3 1 
9 23.19 
9 22.53 
9 22.98 
9 27.12 
9 27.09 
9 25.93 
9 25.90 
9 25.99 
9 26.07 
9 25.62 
10 27.78 
10 26.57 
10 23.64 
10 21.03 
10 18.77 
10 16.33 
10 15.42 
10 18.33 
10 20.02 
10 21.92 
10 21.70 
10 24.12 
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